
Chapter 13

Differential Models

This chapter provides a continuous-time counterpart to the state transition equa-
tion, xk+1 = f(xk, uk), which was crucial in Chapter 2. On a continuous state
space, X (assumed to be a smooth manifold), it will be defined as ẋ = f(x, u),
which intentionally looks similar to the discrete version. It will still be referred
to as a state transition equation. It will also be called a system (short for control
system), which is a term used in control theory. There are no obstacle regions in
this chapter. Obstacles will appear again when planning algorithms are covered
in Chapter 14. In continuous time, the state transition function f(x, u) yields a
velocity as opposed to the next state. Since the transitions are no longer discrete,
it does not make sense to talk about a “next” state. Future states that satisfy the
differential constraints are obtained by integration of the velocity. Therefore, it is
natural to specify only velocities. This relies on the notions of tangent spaces and
vector fields, as covered in Section 8.3.

This chapter presents many example models that can be used in the planning
algorithms of Chapter 14. Section 13.1 develops differential constraints for the case
in which X is the C-space of one or more bodies. These constraints commonly
occur for wheeled vehicles (e.g., a car cannot move sideways). To represent dynam-
ics, constraints on acceleration are needed. Section 13.2 therefore introduces the
phase space, which enables any problem with dynamics to be expressed as velocity
constraints on an enlarged state space. This collapses the higher order derivatives
down to being only first-order, but it comes at the cost of increasing the dimension
of the state space. Section 13.3 introduces the basics of Newton-Euler mechanics
and concludes with expressing the dynamics of a free-floating rigid body. Section
13.4 introduces some concepts from advanced mechanics, including the Lagrangian
and Hamiltonian. It also provides a model of the dynamics of a kinematic chain
of bodies, which applies to typical robot manipulators. Section 13.5 introduces
differential models that have more than one decision maker.

715

716 S. M. LaValle: Planning Algorithms

13.1 Velocity Constraints on the Configuration

Space

In this section, it will be assumed that X = C, which is a C-space of one or more
rigid bodies, as defined in Section 4.2. Differential models in this section are all
expressed as constraints on the set of allowable velocities at each point in C. This
results in first-order differential equations because only velocities are constrained,
as opposed to accelerations or higher order derivatives.

To carefully discuss velocities, it will be assumed that C is a smooth manifold,
as defined in Section 8.3.2, in addition to a topological manifold, as defined in
Section 4.1.2. It may be helpful to keep the cases C = R2 and C = R3 in mind. The
velocities are straightforward to define without resorting to manifold technicalities,
and the dimension is low enough that the concepts can be visualized.

13.1.1 Implicit vs. Parametric Representations

There are two general ways to represent differential constraints: parametric and
implicit. Many parallels can be drawn to the parametric and implicit ways of
specifying functions in general. Parametric representations are generally easier to
understand and are simpler to use in applications. Implicit representations are
more general but are often more difficult to utilize. The intuitive difference is that
implicit representations express velocities that are prohibited, whereas parametric
representations directly express the velocities that are allowed. In this chapter, a
parametric representation is obtained wherever possible; nevertheless, it is impor-
tant to understand both.

13.1.1.1 Implicit representation

The planar case For purposes of illustration, suppose that C = R2. A configu-
ration is expressed as q = (x, y) ∈ R2, and a velocity is expressed as (ẋ, ẏ). Each
(ẋ, ẏ) is an element of the tangent space Tq(R

2), which is a two-dimensional vector
space at every (x, y). Think about the kinds of constraints that could be imposed.
At each q ∈ R2, restricting the set of velocities yields some set U(q) ⊂ Tq(R

2).
The parametric and implicit representations will be alternative ways to express
U(q) for all q ∈ R2.

Here are some interesting, simple constraints. Each yields a definition of U(q)
as the subset of Tq(R

2) that satisfies the constraints.

1. ẋ > 0: In this case, imagine that you are paddling a boat on a swift river
that flows in the positive x direction. You can obtain any velocity you like
in the y direction, but you can never flow against the current. This means
that all integral curves increase monotonically in x over time.

2. ẋ ≥ 0: This constraint allows you to stop moving in the x direction. A
velocity perpendicular to the current can be obtained (for example, (0, 1)

13.1. VELOCITY CONSTRAINTS ON THE CONFIGURATION SPACE 717

causes motion with unit speed in the positive y direction).

3. ẋ > 0, ẏ > 0: Under this constraint, integral curves must monotonically
increase in both x and y.

4. ẋ = 0: In the previous three examples, the set of allowable velocities re-
mained two-dimensional. Under the constraint ẋ = 0, the set of allowable
velocities is only one-dimensional. All vectors of the form (0, ẏ) for any ẏ ∈ R

are allowed. This means that no motion in the x direction is allowed. Start-
ing at any (x0, y0), the integral curves will be of the form (x0, y(t)) for all
t ∈ [0,∞), which confines each one to a vertical line.

5. aẋ+ bẏ = 0: This constraint is qualitatively the same as the previous one.
The difference is that now the motions can be restricted along any collection
of parallel lines by choosing a and b. For example, if a = b = 1, then only
diagonal motions are allowed.

6. aẋ + bẏ + c = 0: This constraint is similar to the previous one, however
the behavior is quite different because the integral curves do not coincide.
An entire half plane is reached. It also impossible to stop becasue ẋ = ẏ = 0
violates the constraint.

7. ẋ2 + ẏ2 ≤ 1: This constraint was used in Chapter 8. It has no effect
on the existence of solutions to the feasible motion planning problem be-
cause motion in any direction is still allowed. The constraint only enforces
a maximum speed.

8. ẋ2 + ẏ2 ≥ 1: This constraint allows motions in any direction and at any
speed greater than 1. It is impossible to stop or slow down below unit speed.

Many other constraints can be imagined, including some that define very com-
plicated regions in R2 for each U(q). Ignoring the fact that ẋ and ẏ represent
derivatives, the geometric modeling concepts from Section 3.1 can even be used to
define complicated constraints at each q. In fact, the constraints expressed above
in terms of ẋ and ẏ are simple examples of the semi-algebraic model, which was
introduced in Section 3.1.2. Just replace x and y from that section by ẋ and ẏ
here.

If at every q there exists some open set O such that (0, 0) ∈ O and O ⊆ U(q),
then there is no effect on the existence of solutions to the feasible motion planning
problem. Velocities in all directions are still allowed. This holds true for velocity
constraints on any smooth manifold [924].

So far, the velocities have been constrained in the same way at every q ∈ R2,
which means that U(q) is the same for all q ∈ R2. Constraints of this kind are of
the form g(ẋ, ẏ) ⊲⊳ 0, in which ⊲⊳ could be =, <, >, ≤, or ≥, and gi is a function
from R2 to R. Typically, the = relation drops the dimension of U(x) by one, and
the others usually leave it unchanged.

718 S. M. LaValle: Planning Algorithms

Now consider the constraint ẋ = x. This results in a different one-dimensional
set, U(q), of allowable velocities at each q ∈ R2. At each q = (x, y), the set of
allowable velocities must be of the form (x, ẏ) for any ẏ ∈ R. This means that as
x increases, the velocity in the x direction must increase proportionally. Starting
at any positive x value, there is no way to travel to the y-axis. However, starting
on the y-axis, the integral curves will always remain on it! Constraints of this kind
can generally be expressed as g(x, y, ẋ, ẏ) ⊲⊳ 0, which allows the dependency on x
or y.

General configuration spaces Velocity constraints can be considered in the
same way on a general C-space. Assume that C is a smooth manifold (a man-
ifold was not required to be smooth in Chapter 4 because derivatives were not
needed there). All constraints are expressed using a coordinate neighborhood, as
defined in Section 8.3.2. For expressing differential models, this actually makes
an n-dimensional manifold look very much like Rn. It is implicitly understood
that a change of coordinates may occasionally be needed; however, this does not
complicate the expression of constraints. This makes it possible to ignore many of
the manifold technicalities and think about the constraints as if they are applied
to Rn.

Now consider placing velocity constraints on C. Imagine how complicated
velocity constraints could become if any semi-algebraic model is allowed. Velocity
constraints on C could be as complicated as any Cobs. It is not even necessary to
use algebraic primitives. In general, the constraints can be expressed as

g(q, q̇) ⊲⊳ 0, (13.1)

in which ⊲⊳ could once again be =, <, >, ≤, or ≥. The same expressive power can
be maintained even after eliminating some of these relations. For example, any
constraint of the form (13.1) can be expressed as a combination of constraints of
the form g(q, q̇) = 0 and g(q, q̇) < 0. All of the relations are allowed here, however,
to make the formulations simpler.

Constraints expressed in the form shown in (13.1) are called implicit. As ex-
plained in Chapters 3 and 4, it can be very complicated to obtain a parametric
representation of the solutions of implicit equations. This was seen, for example,
in Section 4.4, in which it was difficult to characterize the set of configurations
that satisfy closure constraints. Nevertheless, we will be in a much better position
in terms of developing planning algorithms if a parametric representation of the
constraints can be obtained. Fortunately, most constraints that are derived from
robots, vehicles, and other mechanical systems can be expressed in parametric
form.

13.1.1.2 Parametric constraints

The parametric way of expressing velocity constraints gives a different interpre-
tation to U(q). Rather than directly corresponding to a velocity, each u ∈ U(q)

13.1. VELOCITY CONSTRAINTS ON THE CONFIGURATION SPACE 719

is interpreted as an abstract action vector. The set of allowable velocities is then
obtained through a function that maps an action vector into Tq(C). This yields
the configuration transition equation (or system)

q̇ = f(q, u), (13.2)

in which f is a continuous-time version of the state transition function that was
developed in Section 2.1. Note that (13.2) actually represents n scalar equations,
in which n is the dimension of C. The system will nevertheless be referred to as a
single equation in the vector sense. Usually, U(q) is fixed for all q ∈ C. This will
be assumed unless otherwise stated. In this case, the fixed action set is denoted
as U .

There are two interesting ways to interpret (13.2):

1. Subspace of the tangent space: If q is fixed, then f maps from U into
Tq(C). This parameterizes the set of allowable velocities at q because a
velocity vector, f(q, u), is obtained for every u ∈ U(q).

2. Vector field: If u is fixed, then f can be considered as a function that maps
each q ∈ C into Tq(C). This means that f defines a vector field over C for
every fixed u ∈ U .

Example 13.1 (Two Interpetations of q̇ = f(q, u)) Suppose that C = R2,
which yields a two-dimensional velocity vector space at every q = (x, y) ∈ R2. Let
U = R, and q̇ = f(q, u) be defined as ẋ = u and ẏ = x.

To obtain the first interpretation of q̇ = f(q, u), hold q = (x, y) fixed; for each
u ∈ U , a velocity vector (ẋ, ẏ) = (u, x) is obtained. The set of all allowable velocity
vectors at q = (x, y) is

{(ẋ, ẏ) ∈ R2 | ẏ = x}. (13.3)

Suppose that q = (1, 2). In this case, any vector of the form (u, 1) for any u ∈ R

is allowable.
To obtain the second interpretation, hold u fixed. For example, let u = 1. The

vector field (ẋ, ẏ) = (1, x) over R2 is obtained. �

It is important to specify U when defining the configuration transition equation.
We previously allowed, but discouraged, the action set to depend on q. Any
differential constraints expressed as q̇ = f(q, u) for any U can be alternatively
expressed as q̇ = u by defining

U(q) = {q̇ ∈ Rn | ∃u ∈ U such that q̇ = f(q, u)} (13.4)

for each q ∈ C. In this definition, U(q) is not necessarily a subset of U . It is
usually more convenient, however, to use the form q̇ = f(q, u) and keep the same
U for all q. The common interpretation of U is that it is a set of fixed actions that
can be applied from any point in the C-space.

720 S. M. LaValle: Planning Algorithms

In the context of ordinary motion planning, a configuration transition equation
did not need to be specifically mentioned. This issue was discussed in Section
8.4. Provided that U contains an open subset that contains the origin, motion in
any direction is allowed. The configuration transition equation for basic motion
planning was simply q̇ = u. Since this does not impose constraints on the direction,
it was not explicitly mentioned. For the coming models in this chapter, constraints
will be imposed on the velocities that restrict the possible directions. This requires
planning algorithms that handle differential models and is the subject of Chapter
14.

13.1.1.3 Conversion from implicit to parametric form

There are trade-offs between the implicit and parametric ways to express dif-
ferential constraints. The implicit representation is more general; however, the
parametric form is more useful because it explicitly gives the possible actions. For
this reason, it is often desirable to derive a parametric representation from an
implicit one. Under very general conditions, it is theoretically possible. As will be
explained shortly, this is a result of the implicit function theorem. Unfortunately,
the theoretical existence of such a conversion does not help in actually perform-
ing the transformations. In many cases, it may not be practical to determine a
parametric representation.

To model a mechanical system, it is simplest to express constraints in the
implicit form and then derive the parametric representation q̇ = f(q, u). So far
there has been no appearance of u in the implicit representation. Since u is
interpreted as an action, it needs to be specified while deriving the parametric
representation. To understand the issues, it is helpful to first assume that all
constraints in implicit form are linear equations in q̇ of the form

g1(q)q̇1 + g2(q)q̇2 + · · ·+ gn(q)q̇n = 0, (13.5)

which are called Pfaffian constraints. These constraints are linear only under the
assumption that q is known. It is helpful in the current discussion to imagine that
q is fixed at some known value, which means that each of the gi(q) coefficients in
(13.5) is a constant.

Suppose that k Pfaffian constraints are given for k ≤ n and that they are
linearly independent.1 Recall the standard techniques for solving linear equations.
If k = n, then a unique solution exists. If k < n, then a continuum of solutions
exists, which forms an (n − k)-dimensional hyperplane. It is impossible to have
k > n because there can be no more than n linearly independent equations.

If k = n, only one velocity vector satisfies the constraints for each q ∈ C. A
vector field can therefore be derived from the constraints, and the problem is not
interesting from a planning perspective because there is no choice of velocities.
If k < n, then n − k components of q̇ can be chosen independently, and then

1If the coefficients are placed into an k × n matrix, its rank is k.

13.1. VELOCITY CONSTRAINTS ON THE CONFIGURATION SPACE 721

the remaining k are computed to satisfy the Pfaffian constraints (this can be ac-
complished using linear algebra techniques such as singular value decomposition
[399, 961]). The components of q̇ that can be chosen independently can be con-
sidered as n− k scalar actions. Together these form an (n− k)-dimensional action
vector, u = (u1, . . . , un−k). Suppose without loss of generality that the first n− k
components of q̇ are specified by u. The configuration transition equation can then
be written as

q̇1 = u1 q̇n−k+1 = fn−k+1(q, u)

q̇2 = u2 q̇n−k+2 = fn−k+2(q, u)

...
... (13.6)

q̇n−k = un−k q̇n = fn(q, u),

in which each fi is a linear function of u and is derived from the Pfaffian constraints
after substituting ui for q̇i for each i from 1 to n − k and then solving for the
remaining components of q̇. For some values of q, the constraints may become
linearly dependent. This only weakens the constraints, which means the dimension
of u can be increased at any q for which independence is lost. Such points are
usually isolated and will not be considered further.

Example 13.2 (Pfaffian Constraints) Suppose that C = R3, and there is one
constraint of the form (13.5)

2q̇1 − q̇2 − q̇3 = 0. (13.7)

For this problem, n = 3 and k = 1. There are two action variables because
n− k = 2. The configuration transition equation is

q̇1 = u1

q̇2 = u2

q̇3 = 2u1 − u2,

(13.8)

in which the last component was obtained by substituting u1 and u2, respectively,
for q̇1 and q̇2 in (13.7) and then solving for q̇3.

The constraint given in (13.7) does not even depend on q. The same ideas
apply for more general Pfaffian constraints, such as

(cos q3)q̇1 − (sin q3)q̇2 − q̇3 = 0. (13.9)

Following the same procedure, the configuration transition equation becomes

q̇1 = u1

q̇2 = u2

q̇3 = (cos q3)u1 − (sin q3)u2.

(13.10)

�

722 S. M. LaValle: Planning Algorithms

The ideas presented so far naturally extend to equality constraints that are not
linear in ẋ. At each q, an (n − k)-dimensional set of actions, U(q), is guaranteed
to exist if the Jacobian ∂(g1, . . . , gk)/∂(q̇1, . . . , q̇n) (recall (6.28) or see [508]) of
the constraint functions has rank k at q. This follows from the implicit function
theorem [508].

Suppose that there are inequality constraints of the form g(q, q̇) ≤ 0, in addition
to equality constraints. Using the previous concepts, the actions may once again
be assigned directly as q̇i = ui for all i such that 1 ≤ i ≤ n−k. Without inequality
constraints, there are no constraints on u, which means that U = Rn. Since u is
interpreted as an input to some physical system, U will often be constrained. In a
physical system, for example, the amount of energy consumed may be proportional
to u. After performing the q̇i = ui substitutions, the inequality constraints indicate
limits on u. These limits are expressed in terms of q and the remaining components
of q̇, which are the variables q̇n−k+1, . . ., q̇n. For many problems, the inequality
constraints are simple enough that constraints directly on U can be derived. For
example, if u1 represents scalar acceleration applied to a car, then it may have a
simple bound such as |u1| ≤ 1.

One final complication that sometimes occurs is that the action variables may
already be specified in the equality constraints: g(q, q̇, u) = 0. In this case, imagine
once again that q is fixed. If there are k independent constraints, then by the im-
plicit function theorem, q̇ can be solved to yield q̇ = f(q, u) (although theoretically
possible, it may be difficult in practice). If the Jacobian ∂(f1, . . . , fn)/∂(u1, . . . , uk)
has rank k at q, then actions can be applied to yield any velocity on a k-dimensional
hyperplane in Tq(C). If k = n, then there are enough independent action variables
to overcome the constraints. Any velocity in Tq(C) can be achieved through a
choice of u. This is true only if there are no inequality constraints on U .

13.1.2 Kinematics for Wheeled Systems

The most common family of examples in robotics arises from wheels that are
required to roll in the direction they are pointing. Most wheels are not designed
to slide sideways. This imposes velocity constraints on rolling vehicles. As a result,
there are usually less action variables than degrees of freedom. Such systems are
therefore called underactuated. It is interesting that, in many cases, vehicles can
execute motions that overcome the constraint. For example, a car can parallel park
itself anywhere that it could reach if all four wheels could turn to any orientation.
This leads to formal concepts such as nonholonomic constraints and small-time
local controllability, which are covered in Section 15.4.

13.1.2.1 A simple car

One of the easiest examples to understand is the simple car, which is shown in
Figure 13.1. We all know that a car cannot drive sideways because the back wheels
would have to slide instead of roll. This is why parallel parking is challenging. If
all four wheels could be turned simultaneously toward the curb, it would be trivial

13.1. VELOCITY CONSTRAINTS ON THE CONFIGURATION SPACE 723

L

ρ

φ

θ

(x, y)

Figure 13.1: The simple car has three degrees of freedom, but the velocity space
at any configuration is only two-dimensional.

to park a car. The complicated maneuvers for parking a simple car arise because
of rolling constraints.

The car can be imagined as a rigid body that moves in the plane. Therefore,
its C-space is C = R2 × S1. Figure 13.1 indicates several parameters associated
with the car. A configuration is denoted by q = (x, y, θ). The body frame of the
car places the origin at the center of rear axle, and the x-axis points along the
main axis of the car. Let s denote the (signed) speed2 of the car. Let φ denote
the steering angle (it is negative for the wheel orientations shown in Figure 13.1).
The distance between the front and rear axles is represented as L. If the steering
angle is fixed at φ, the car travels in a circular motion, in which the radius of the
circle is ρ. Note that ρ can be determined from the intersection of the two axes
shown in Figure 13.1 (the angle between these axes is |φ|).

Using the current notation, the task is to represent the motion of the car as a
set of equations of the form

ẋ = f1(x, y, θ, s, φ)

ẏ = f2(x, y, θ, s, φ)

θ̇ = f3(x, y, θ, s, φ).

(13.11)

In a small time interval, ∆t, the car must move approximately in the direction
that the rear wheels are pointing. In the limit as ∆t tends to zero, this implies
that dy/dx = tan θ. Since dy/dx = ẏ/ẋ and tan θ = sin θ/ cos θ, this condition can

2Having a signed speed is somewhat unorthodox. If the car moves in reverse, then s is
negative. A more correct name for s would be velocity in the x direction of the body frame, but
this is too cumbersome.

724 S. M. LaValle: Planning Algorithms

be written as a Pfaffian constraint (recall (13.5)):

− ẋ sin θ + ẏ cos θ = 0. (13.12)

The constraint is satisfied if ẋ = cos θ and ẏ = sin θ. Furthermore, any scalar
multiple of this solution is also a solution; the scaling factor corresponds directly
to the speed s of the car. Thus, the first two scalar components of the configuration
transition equation are ẋ = s cos θ and ẏ = s sin θ.

The next task is to derive the equation for θ̇. Let w denote the distance traveled
by the car (the integral of speed). As shown in Figure 13.1, ρ represents the radius
of a circle that is traversed by the center of the rear axle, if the steering angle is
fixed. Note that dw = ρdθ. From trigonometry, ρ = L/ tanφ, which implies

dθ =
tanφ

L
dw. (13.13)

Dividing both sides by dt and using the fact that ẇ = s yields

θ̇ =
s

L
tanφ. (13.14)

So far, the motion of the car has been modeled, but no action variables have
been specified. Suppose that the speed s and steering angle φ are directly specified
by the action variables us and uφ, respectively. The convention of using a u variable
with the old variable name appearing as a subscript will be followed. This makes
it easy to identify the actions in a configuration transition equation. A two-
dimensional action vector, u = (us, uφ), is obtained. The configuration transition
equation for the simple car is

ẋ = us cos θ

ẏ = us sin θ

θ̇ =
us
L

tan uφ.

(13.15)

As expressed in (13.15), the transition equation is not yet complete without
specifying U , the set of actions of the form u = (us, uφ). First suppose that any
us ∈ R is possible. What steering angles are possible? The interval [−π/2, π/2]
is sufficiently large for the steering angle uφ because any other value is equivalent
to one between −π/2 and π/2. Steering angles of π/2 and −π/2 are problematic.
To derive the expressions for ẋ and ẏ, it was assumed that the car moves in the
direction that the rear wheels are pointing. Imagine you are sitting on a tricycle
and turn the front wheel perpendicular to the rear wheels (assigning uφ = π/2).
If you are able to pedal, then the tricycle should rotate in place. This means that
ẋ = ẏ = 0 because the center of the rear axle does not translate.

This strange behavior is not allowed for a standard automobile. A car with
rear-wheel drive would probably skid the front wheels across the pavement. If a
car with front-wheel drive attempted this, it should behave as a tricycle; however,

13.1. VELOCITY CONSTRAINTS ON THE CONFIGURATION SPACE 725

this is usually not possible because the front wheels would collide with the front
axle when turned to φ = π/2. Therefore, the simple car should have a maximum
steering angle, φmax < π/2, and we require that |φ| ≤ φmax. Observe from Figure
13.1 that a maximum steering angle implies a minimum turning radius, ρmin. For
the case of a tricycle, ρmin = 0. You may have encountered the problem of a
minimum turning radius while trying to make an illegal U-turn. It is sometimes
difficult to turn a car around without driving it off of the road.

Now return to the speed us. On level pavement, a real vehicle has a top speed,
and its behavior should change dramatically depending on the speed. For example,
if you want to drive along the minimum turning radius, you should not drive at
140km/hr. It seems that the maximum steering angle should reduce at higher
speeds. This enters the realm of dynamics, which will be allowed after phase
spaces are introduced in Section 13.2. Following this, some models of cars with
dynamics will be covered in Sections 13.2.4 and 13.3.3.

It has been assumed implicitly that the simple car is moving slowly to safely
neglect dynamics. A bound such as |us| ≤ 1 can be placed on the speed without
affecting the configurations that it can reach. The speed can even be constrained
as us ∈ {−1, 0, 1} without destroying reachability. Be careful, however, about a
bound such as 0 ≤ us ≤ 1. In this case, the car cannot drive in reverse! This
clearly affects the set of reachable configurations. Imagine a car that is facing a
wall and is unable to move in reverse. It may be forced to hit the wall as it moves.

Based on these considerations regarding the speed and steering angle, several
interesting variations are possible:

Tricycle: U = [−1, 1]× [−π/2, π/2]. Assuming front-wheel drive, the “car”
can rotate in place if uφ = π/2 or uφ = π/2. This is unrealistic for a simple
car. The resulting model is similar to that of the simple unicycle, which
appears later in (13.18).

Simple Car [596]: U = [−1, 1]× (−φmax, φmax). By requiring that |uφ| ≤
φmax < π/2, a car with minimum turning radius ρmin = L/ tanφmax is
obtained.

Reeds-Shepp Car [814, 923]: Further restrict the speed of the simple
car so that us ∈ {−1, 0, 1}.3 This model intuitively makes us correspond to
three discrete “gears”: reverse, park, or forward. An interesting question
under this model is: What is the shortest possible path (traversed in R2

by the center of the rear axle) between two configurations in the absence of
obstacles? This is answered in Section 15.3.

Dubins Car [294]: Remove the reverse speed us = −1 from the Reeds-
Shepp car to obtain us ∈ {0, 1} as the only possible speeds. The shortest
paths in R2 for this car are quite different than for the Reeds-Shepp car; see
Section 15.3.

3In many works, the speed us = 0 is not included. It appears here so that a proper termination
condition can be defined.

726 S. M. LaValle: Planning Algorithms

The car that was shown in Figure 1.12a of Section 1.2 is even more restricted than
the Dubins car because it is additionally forced to turn left.

Basic controllability issues have been studied thoroughly for the simple car.
These will be covered in Section 15.4, but it is helpful to develop intuitive notions
here to assist in understanding the planning algorithms of Chapter 14. The sim-
ple car is considered nonholonomic because there are differential constraints that
cannot be completely integrated. This means that the car configurations are not
restricted to a lower dimensional subspace of C. The Reeds-Shepp car can be ma-
neuvered into an arbitrarily small parking space, provided that a small amount of
clearance exists. This property is called small-time local controllability and is pre-
sented in Section 15.1.3. The Dubins car is nonholonomic, but it does not possess
this property. Imagine the difficulty of parallel parking without using the reverse
gear. In an infinitely large parking lot without obstacles, however, the Dubins car
can reach any configuration.

13.1.2.2 A differential drive

Most indoor mobile robots do not move like a car. For example, consider the
mobile robotics platform shown in Figure 13.2a. This is an example of the most
popular way to drive indoor mobile robots. There are two main wheels, each of
which is attached to its own motor. A third wheel (not visible in Figure 13.2a) is
placed in the rear to passively roll along while preventing the robot from falling
over.

To construct a simple model of the constraints that arise from the differential
drive, only the distance L between the two wheels, and the wheel radius, r, are
necessary. See Figure 13.2b. The action vector u = (ur, ul) directly specifies the
two angular wheel velocities (e.g., in radians per second). Consider how the robot
moves as different actions are applied. See Figure 13.3. If ul = ur > 0, then the
robot moves forward in the direction that the wheels are pointing. The speed is
proportional to r. In general, if ul = ur, then the distance traveled over a duration
t of time is rtul (because tul is the total angular displacement of the wheels). If
ul = −ur 6= 0, then the robot rotates clockwise because the wheels are turning in
opposite directions. This motivates the placement of the body-frame origin at the
center of the axle between the wheels. By this assignment, no translation occurs
if the wheels rotate at the same rate but in opposite directions.

Based on these observations, the configuration transition equation is

ẋ =
r

2
(ul + ur) cos θ

ẏ =
r

2
(ul + ur) sin θ

θ̇ =
r

L
(ur − ul).

(13.16)

The translational part contains cos θ and sin θ parts, just like the simple car be-
cause the differential drive moves in the direction that its drive wheels are pointing.

13.1. VELOCITY CONSTRAINTS ON THE CONFIGURATION SPACE 727

r

L

x

y

(a) (b)

Figure 13.2: (a) The Pioneer 3-DX8 (courtesy of ActivMedia Robotics: MobileR-
obots.com), and many other mobile robots use a differential drive. In addition to
the two drive wheels, a caster wheel (as on the bottom of an office chair) is placed
in the rear center to prevent the robot from toppling over. (b) The parameters of
a generic differential-drive robot.

(a) (b)

Figure 13.3: (a) Pure translation occurs when both wheels move at the same angu-
lar velocity; (b) pure rotation occurs when the wheels move at opposite velocities.

728 S. M. LaValle: Planning Algorithms

Figure 13.4: The shortest path traversed by the center of the axle is simply the
line segment that connects the initial and goal positions in the plane. Rotations
appear to be cost-free.

The translation speed depends on the average of the angular wheel velocities. To
see this, consider the case in which one wheel is fixed and the other rotates. This
initially causes the robot to translate at 1/2 of the speed in comparison to both
wheels rotating. The rotational speed θ̇ is proportional to the change in angular
wheel speeds. The robot’s rotation rate grows linearly with the wheel radius but
reduces linearly with respect to the distance between the wheels.

It is sometimes preferable to transform the action space. Let uω = (ur + ul)/2
and uψ = ur − ul. In this case, uω can be interpreted as an action variable that
means “translate,” and uψ means “rotate.” Using these actions, the configuration
transition equation becomes

ẋ = ruω cos θ

ẏ = ruω sin θ

θ̇ =
r

L
uψ.

(13.17)

In this form, the configuration transition equation resembles (13.15) for the simple
car (try setting uψ = tan uφ and us = ruω). A differential drive can easily simulate
the motions of the simple car. For the differential drive, the rotation rate can be
set independently of the translational velocity. The simple car, however, has the
speed us appearing in the θ̇ expression. Therefore, the rotation rate depends on
the translational velocity.

Recall the question asked about shortest paths for the Reeds-Shepp and Dubins
cars. The same question for the differential drive turns out to be uninteresting
because the differential drive can cause the center of its axle to follow any con-
tinuous path in R2. As depicted in Figure 13.4, it can move between any two
configurations by: 1) first rotating itself to point the wheels to the goal position,
which causes no translation; 2) translating itself to the goal position; and 3) rotat-
ing itself to the desired orientation, which again causes no translation. The total
distance traveled by the center of the axle is always the Euclidean distance in R2

between the two desired positions.

13.1. VELOCITY CONSTRAINTS ON THE CONFIGURATION SPACE 729

θ
r

y

x

Figure 13.5: Viewed from above, the unicycle model has an action uω that changes
the wheel orientation θ.

This may seem like a strange effect due to the placement of the coordinate
origin. Rotations seem to have no cost. This can be fixed by optimizing the
total amount of wheel rotation or time required, if the speed is held fixed [64].
Suppose that ur, ul ∈ {−1, 0, 1}. Determining the minimum time required to
travel between two configurations is quite interesting and is covered in Section
15.3. This properly takes into account the cost of rotating the robot, even if it
does not cause a translation.

13.1.2.3 A simple unicycle

Consider the simple model of a unicycle, which is shown in Figure 13.5. Ignoring
balancing concerns, there are two action variables. The rider of the unicycle can
set the pedaling speed and the orientation of the wheel with respect to the z-axis.
Let σ denote the pedaling angular velocity, and let r be the wheel radius. The
speed of the unicycle is s = rσ. In this model, the speed is set directly by an
action variable us (alternatively, the pedaling rate could be an action variable uσ,
and the speed is derived as s = ruσ). Let ω be the angular velocity of the unicycle
orientation in the xy plane (hence, ω = θ̇). Let ω be directly set by an action
variable uω. The configuration transition equation is

ẋ = us cos θ

ẏ = us sin θ

θ̇ = uω.

(13.18)

This is just the differential drive equation (13.17) with L = 1 and the substitution
us = ruσ. Thus, a differential drive can simulate a unicycle. This may seem
strange; however, it is possible because these models do not consider dynamics.

730 S. M. LaValle: Planning Algorithms

d1 (x, y)

θ2

θ1

d2

θ0

L
φ

Figure 13.6: The parameters for a car pulling trailers.

Note that the unicycle can also simulate the simple-car model. Therefore, the
tricycle and unicycle models are similar.

13.1.2.4 A car pulling trailers

An interesting extension of the simple car can be made by attaching one or more
trailers. You may have seen a train of luggage carts on the tarmac at airports.
There are many subtle issues for modeling the constraints for these models. The
form of equations is very sensitive to the precise point at which the trailer is
attached and also on the choice of body frames. One possibility for expressing
the kinematics is to use the expressions in Section 3.3; however, these may lead to
complications when analyzing the constraints. It is somewhat of an art to find a
simple expression of the constraints. The model given here is adapted from [727].4

Consider a simple car that pulls k trailers as shown in Figure 13.6. Each trailer
is attached to the center of the rear axle of the body in front of it. The important
new parameter is the hitch length di which is the distance from the center of the
rear axle of trailer i to the point at which the trailer is hitched to the next body.
Using concepts from Section 3.3.1, the car itself contributes R2×S1 to C, and each
trailer contributes an S1 component to C. The dimension of C is therefore k + 3.
Let θi denote the orientation of the ith trailer, expressed with respect to the world
frame.

4The original model required a continuous steering angle.

13.1. VELOCITY CONSTRAINTS ON THE CONFIGURATION SPACE 731

The configuration transition equation is

ẋ = s cos θ0

ẏ = s sin θ0

θ̇0 =
s

L
tanφ

θ̇1 =
s

d1
sin(θ0 − θ1)

...

θ̇i =
s

di

(
i−1∏

j=1

cos(θj−1 − θj)

)

sin(θi−1 − θi)

...

θ̇k =
s

dk

(
k−1∏

j=1

cos(θj−1 − θj)

)

sin(θk−1 − θk).

(13.19)

An interesting variation of this model is to allow the trailer wheels to be steered.
For a single trailer, this leads to a model that resembles a firetruck [163].

13.1.3 Other Examples of Velocity Constraints

The differential models seen so far were obtained from wheels that roll along a
planar surface. Many generalizations are possible by considering other ways in
which bodies can contact each other. In robotics, many interesting differential
models arise in the context of manipulation. This section briefly covers some
other examples of velocity constraints on the C-space. Once again, dynamics is
neglected for now. Such models are sometimes classified as quasi-static because
even though motions occur, some aspects of the model treat the bodies as if they
were static. Such models are often realistic when moving at slow enough speeds.

13.1.3.1 Pushing a box

Imagine using a differential drive robot to push a box around on the floor, as
shown in Figure 13.7a. It is assumed that the box is a convex polygon, one edge
of which contacts the front of the robot. There are frictional contacts between
the box and floor and also between the box and robot. Suppose that the robot is
moving slowly enough so that dynamics are insignificant. It is assumed that the
box cannot move unless the robot is moving. This prohibits manipulations such
as “kicking” the box across the room. The term stable pushing [12, 671, 681] refers
to the case in which the robot moves the box as if the box were rigidly attached
to the robot.

As the robot pushes the box, the box may slide or rotate, as shown in Figures
13.7b and 13.7c, respectively. These cases are considered illegal because they do

732 S. M. LaValle: Planning Algorithms

Robot Box

(a) Stable pushing (b) Illegal sliding (c) Illegal rotation

Figure 13.7: Lynch and Mason showed that pushing a box is very much like driving
the simple car: (a) With careful motions, the box will act as if it is attached to
the robot. b) If it turns too sharply, however, the box will slide away; this induces
limits on the steering angle. c) The box may alternatively rotate from sharp turns
[671].

not constitute stable pushing. What motions of the robot are possible? Begin
with the configuration transition equation of the differential drive robot, and then
determine which constraints need to be placed on U to maintain stable pushing.
Suppose that (13.17) is used. It is clear that only forward motion is possible
because the robot immediately breaks contact with the box if the robot moves
in the opposite direction. Thus, s must be positive (also, to fit the quasi-static
model, s should be small enough so that dynamical effects become insignificant).
How should the rotation rate ψ be constrained? Constraints on ψ depend on the
friction model (e.g., Coulomb), the shape of the box, and the particular edge that
is being pushed. Details on these constraints are given in [671, 681]. This leads
to an interval [a, b] ⊆ [−π/2, π/2], in which a < 0 and b > 0, and it is required
that ψ ∈ [a, b]. This combination of constraints produces a motion model that
is similar to the Dubins car. The main difference is that the maximum steering
angle in the left and right directions may be different.

To apply this model for planning, it seems that the C-space should be R2×S1×
R2×S1 because there are two rigid bodies. The manipulation planning framework
of Section 7.3.2 can be applied to obtain a hybrid system and manipulation graph
that expresses the various ways in which the robot can contact the box or fail to
contact the box. For example, the robot may be able to push the box along one
of several possible edges. If the robot becomes stuck, it can change the pushing
edge to move the box in a new direction.

13.1.3.2 Flying an airplane

The Dubins car model from Section 13.1.2 can be extended to 3D worlds to provide
a simple aircraft flight model that may be reasonable for air traffic analysis. First
suppose that the aircraft maintains a fixed altitude and is capable only of yaw
rotations. In this case, (13.15) could be used directly by imposing the constraint

13.1. VELOCITY CONSTRAINTS ON THE CONFIGURATION SPACE 733

that s = 1 (or some suitable positive speed). This is equivalent to the Dubins
car, except that s = 0 is prohibited because it would imply that the aircraft can
instantaneously stop in the air. This model assumes that the aircraft is small
relative to the C-space. A more precise model should take into account pitch and
roll rotations, disturbances, and dynamic effects. These would become important,
for example, in studying the flight stability of an aircraft design. Such concerns
are neglected here.

Now consider an aircraft that can change its altitude, in addition to executing
motions like the Dubins car. In this case let C = R3 × S1, in which the extra R

represents the altitude with respect to flying over a flat surface. A configuration
is represented as q = (x, y, z, θ). Let uz denote an action that directly causes a
change in the altitude: ż = uz. The steering action uφ is the same as in the Dubins
car model. The configuration transition equation is

ẋ = cos θ ż = uz

ẏ = sin θ θ̇ = uω. (13.20)

For a fixed value of u = (uz, uω) such that uz 6= 0 and uω 6= 0, a helical path
results. The central axis of the helix is parallel to the z-axis, and projection of the
path down to the xy plane is a circle or circular arc. Maximum absolute values
should be set for uz and uω based on the maximum possible altitude and yaw rate
changes of the aircraft.

13.1.3.3 Rolling a ball

Instead of a wheel, consider rolling a ball in the plane. Place a ball on a table
and try rolling it with your palm placed flat on top of it. It should feel like
there are two degrees of freedom: rolling forward and rolling side to side. The
ball should not be able to spin in place. The directions can be considered as two
action variables. The total degrees of freedom of the ball is five, however, because
it can achieve any orientation in SO(3) and any (x, y) position in the plane; thus,
C = R2 × SO(3). Given that there are only two action variables, is it possible to
roll the ball into any configuration? It is shown in [632, 491] that this is possible,
even for the more general problem of one sphere rolling on another (the plane is
a special case of a sphere with infinite radius). This problem can actually arise
in robotic manipulation when a spherical object come into contact (e.g., a robot
hand may have fingers with spherical tips); see [103, 676, 725, 729].

The resulting transition equation was shown in [716] (also see [725]) to be

θ̇ = −u2
φ̇ =

u1
cos θ

ẋ = −u1ρ sinψ − u2ρ cosψ

ẏ = −u1ρ cosψ + u2ρ sinψ

ψ̇ = −u1 tan θ.

(13.21)

734 S. M. LaValle: Planning Algorithms

In these equations, x and y are the position on the contact point in the plane, and
θ and φ are the position of the contact point in the ball frame and are expressed
using spherical coordinates. The radius of the ball is ρ. Finally, ψ expresses the
orientation of the ball with respect to the contact point.

13.1.3.4 Trapped on a surface

It is possible that the constraints cause the configuration to be trapped on a lower
dimensional surface. Let C = R2, and consider the system

ẋ = yu ẏ = −xu, (13.22)

for (x, y) ∈ R2 and u ∈ U = R. What are the integral curves for a constant
action u 6= 0? From any point (x, y) ∈ R2, the trajectory follows a circle of radius
√

x2 + y2 centered at the origin. The speed along the circle is determined by |u|,
and the direction is determined by the sign of u. Therefore, (13.22) indicates that
the configuration is confined to a circle. Other than that, there are no further
constraints.

Suppose that the initial configuration is given as (x0, y0). Since the configura-
tion is confined to a circle, the C-space could alternatively be defined as C = S1.
Each point on S1 can be mapped to the circle that has radius r =

√

x20 + y20
and center at (0, 0). In this case, there are no differential constraints on the ve-
locities, provided that motions are trapped on the circle. Any velocity in the
one-dimensional tangent space at points on the circle is allowed. This model is
equivalent to (13.22).

Now consider the possible trajectories that are constrained to traverse a circle,

h(x, y) = x2 + y2 − r2 = 0. (13.23)

This means that for all time t,

h(x(t), y(t)) = x(t)2 + y(t)2 − r2 = 0. (13.24)

To derive a constraint on velocities, take the derivative with respect to time, which
yields

dh(x, y)

dt
= 2xẋ+ 2yẏ = 0. (13.25)

This is an example of a Pfaffian constraint, as given in (13.5). The parametric form
of this differential constraint happens to be (13.22). Any velocity vector that is a
multiple of (y,−x) satisfies (13.25). When expressed as a differential constraint,
the radius r does not matter. This is because it is determined from the initial
configuration.

What just occurred here is a special case of a completely integrable differential
model. In general, if the model q̇ = f(q, u) can be expressed as the time derivative
of constraints of the form h(q) = 0, then the configuration transition equation
is said to be completely integrable. Obtaining an implicit differential model from

13.2. PHASE SPACE REPRESENTATION OF DYNAMICAL SYSTEMS 735

constraints of the form hi(q) = 0 is not difficult. Each constraint is differentiated
to obtain

dhi(q)

dt
= 0. (13.26)

For example, such constraints arise from closed kinematic chains, as in Section
4.4, and the implicit differential model just expresses the condition that velocities
must lie in the tangent space to the constraints. It may be difficult, however, to
obtain a parametric form of the differential model. Possible velocity vectors can
be computed at any particular q, however, by using the linear algebra techniques
described in Section 7.4.1.

It is even quite difficult to determine whether a differential model is completely
integrable, which means that the configurations are trapped on a lower dimensional
surface. For some systems, to be described by (13.41), this will be solved by the
Frobenius Theorem in 15.4.2. If such systems are not completely integrable, they
are called nonholonomic; otherwise, they are called holonomic. In general, even if
a model is theoretically integrable, actually performing the integration is another
issue. In most cases, it is difficult or impossible to integrate the model.

Therefore, it is sometimes important to work directly with constraints in dif-
ferential form, even if they are integrable. Furthermore, methods for planning
under differential constraints can be applied to problems that have constraints of
the form h(q) = 0. This, for example, implies that motion planning for closed
kinematic chains can be performed by planning algorithms designed to handle
differential constraints.

13.2 Phase Space Representation of Dynamical

Systems

The differential constraints defined in Section 13.1 are often called kinematic be-
cause they can be expressed in terms of velocities on the C-space. This formulation
is useful for many problems, such as modeling the possible directions of motions
for a wheeled mobile robot. It does not, however, enable dynamics to be expressed.
For example, suppose that the simple car is traveling quickly. Taking dynamics
into account, it should not be able to instantaneously start and stop. For example,
if it is heading straight for a wall at full speed, any reasonable model should not
allow it to apply its brakes from only one millimeter away and expect it to avoid
collision. Due to momentum, the required stopping distance depends on the speed.
You may have learned this from a drivers education course.

To account for momentum and other aspects of dynamics, higher order differ-
ential equations are needed. There are usually constraints on acceleration q̈, which
is defined as dq̇/dt. For example, the car may only be able to decelerate at some
maximum rate without skidding the wheels (or tumbling the vehicle). Most often,
the actions are even expressed in terms of higher order derivatives. For example,
the floor pedal of a car may directly set the acceleration. It may be reasonable

736 S. M. LaValle: Planning Algorithms

to consider the amount that the pedal is pressed as an action variable. In this
case, the configuration must be obtained by two integrations. The first yields the
velocity, and the second yields the configuration.

The models for dynamics therefore involve acceleration q̈ in addition to velocity
q̇ and configuration q. Once again, both implicit and parametric models exist. For
an implicit model, the constraints are expressed as

gi(q̈, q̇, q) = 0. (13.27)

For a parametric model, they are expressed as

q̈ = f(q̇, q, u). (13.28)

13.2.1 Reducing Degree by Increasing Dimension

Taking into account constraints on higher order derivatives seems substantially
more complicated. This section explains a convenient trick that converts con-
straints that have higher order derivatives into a new set of constraints that has
only first-order derivatives. This involves the introduction of a phase space, which
has more dimensions than the original C-space. Thus, there is a trade-off because
the dimension is increased; however, it is widely accepted that increasing the di-
mension of the space is often easier than dealing with higher order derivatives. In
general, the term state space will refer to either C-spaces or phase spaces derived
from them.

13.2.1.1 The scalar case

To make the discussion concrete, consider the following differential equation:

ÿ − 3ẏ + y = 0, (13.29)

in which y is a scalar variable, y ∈ R. This is a second-order differential equation
because of ÿ. A phase space can be defined as follows. Let x = (x1, x2) denote
a two-dimensional phase vector, which is defined by assigning x1 = y and x2 =
ẏ. The terms state space and state vector will be used interchangeably with
phase space and phase vector, respectively, in contexts in which the phase space
is defined. Substituting the equations into (13.29) yields

ÿ − 3x2 + x1 = 0. (13.30)

So far, this does not seem to have helped. However, ÿ can be expressed as either
ẋ2 or ẍ1. The first choice is better because it is a lower order derivative. Using
ẋ2 = ÿ, the differential equation becomes

ẋ2 − 3x2 + x1 = 0. (13.31)

Is this expression equivalent to (13.29)? By itself it is not. There is one more
constraint, x2 = ẋ1. In implicit form, ẋ1 − x2 = 0. The key to making the

13.2. PHASE SPACE REPRESENTATION OF DYNAMICAL SYSTEMS 737

phase space approach work correctly is to relate some of the phase variables by
derivatives.

Using the phase space, we just converted the second-order differential equation
(13.29) into two first-order differential equations,

ẋ1 = x2

ẋ2 = 3x2 − x1,
(13.32)

which are obtained by solving for ẋ1 and ẋ2. Note that (13.32) can be expressed
as ẋ = f(x), in which f is a function that maps from R2 into R2.

The same approach can be used for any differential equation in implicit form,
g(ÿ, ẏ, y) = 0. Let x1 = y, x2 = ẏ, and ẋ2 = ÿ. This results in the implicit
equations g(ẋ2, x2, x1) = 0 and ẋ1 = x2. Now suppose that there is a scalar
action u ∈ U = R represented in the differential equations. Once again, the
same approach applies. In implicit form, g(ÿ, ẏ, y, u) = 0 can be expressed as
g(ẋ2, x2, x1, u) = 0.

Suppose that a given acceleration constraint is expressed in parametric form
as ÿ = h(ẏ, y, u). This often occurs in the dynamics models of Section 13.3. This
can be converted into a phase transition equation or state transition equation of
the form ẋ = f(x, u), in which f : R2 × R → R2. The expression is

ẋ1 = x2

ẋ2 = h(x2, x1, u).
(13.33)

For a second-order differential equation, two initial conditions are usually given.
The values of y(0) and ẏ(0) are needed to determine the exact position y(t) for
any t ≥ 0. Using the phase space representation, no higher order initial conditions
are needed because any point in phase space indicates both y and ẏ. Thus, given
an initial point in the phase and u(t) for all t ≥ 0, y(t) can be determined.

Example 13.3 (Double Integrator) The double integrator is a simple yet im-
portant example that nicely illustrates the phase space. Suppose that a second-
order differential equation is given as q̈ = u, in which q and u are chosen from R.
In words, this means that the action directly specifies acceleration. Integrating5

once yields the velocity q̇ and performing a double integration yields the position
q. If q(0) and q̇(0) are given, and u(t′) is specified for all t′ ∈ [0, t), then q̇(t) and
q(t) can be determined for any t > 0.

A two-dimensional phase space X = R2 is defined in which

x = (x1, x2) = (q, q̇). (13.34)

The state (or phase) transition equation ẋ = f(x, u) is

ẋ1 = x2

ẋ2 = u.
(13.35)

5Wherever integrals are performed, it will be assumed that the integrands are integrable.

738 S. M. LaValle: Planning Algorithms

To determine the state trajectory, initial values x1(0) = q0 (position) and x2(0) =
q̇0 (velocity) must be given in addition to the action history. If u is constant, then
the state trajectory is quadratic because it is obtained by two integrations of a
constant function. �

13.2.1.2 The vector case

The transformation to the phase space can be extended to differential equations
in which there are time derivatives in more than one variable. Suppose that q
represents a configuration, expressed using a coordinate neighborhood on a smooth
n-dimensional manifold C. Second-order constraints of the form g(q̈, q̇, q) = 0 or
g(q̈, q̇, q, u) = 0 can be expressed as first-order constraints in a 2n-dimensional
state space. Let x denote the 2n-dimensional phase vector. By extending the
method that was applied to the scalar case, x is defined as x = (q, q̇). For each
integer i such that 1 ≤ i ≤ n, xi = qi. For each i such that n + 1 ≤ i ≤ 2n,
xi = q̇i−n. These substitutions can be made directly into an implicit constraint to
reduce the order to one.

Suppose that a set of n differential equations is expressed in parametric form as
q̈ = h(q, q̇, u). In the phase space, there are 2n differential equations. The first n
correspond to the phase space definition ẋi = xn+i, for each i such that 1 ≤ i ≤ n.
These hold because xn+i = q̇i and ẋi is the time derivative of q̇i for i ≤ n. The
remaining n components of ẋ = f(x, u) follow directly from h by substituting the
first n components of x in the place of q and the remaining n in the place of q̇ in
the expression h(q, q̇, u). The result can be denoted as h(x, u) (obtained directly
from h(q, q̇, u)). This yields the final n equations as ẋi = hi−n(x, u), for each i
such that n+ 1 ≤ i ≤ 2n. These 2n equations define a phase (or state) transition
equation of the form ẋ = f(x, u). Now it is clear that constraints on acceleration
can be manipulated into velocity constraints on the phase space. This enables
the tangent space concepts from Section 8.3 to express constraints that involve
acceleration. Furthermore, the state space X is the tangent bundle (defined in
(8.9) for Rn and later in (15.67) for any smooth manifold) of C because q and q̇
together indicate a tangent space Tq(C) and a particular tangent vector q̇ ∈ Tq(C).

13.2.1.3 Higher order differential constraints

The phase space idea can even be applied to differential equations with order higher
than two. For example, a constraint may involve the time derivative of acceleration
q(3), which is often called jerk. If the differential equations involve jerk variables,
then a 3n-dimensional phase space can be defined to obtain first-order constraints.
In this case, each qi, q̇i, and q̈i in a constraint such as g(q(3), q̈, q̇, q, u) = 0 is defined
as a phase variable. Similarly, kth-order differential constraints can be reduced to
first-order constraints by introducing a kn-dimensional phase space.

13.2. PHASE SPACE REPRESENTATION OF DYNAMICAL SYSTEMS 739

Example 13.4 (Chain of Integrators) A simple example of higher order dif-
ferential constraints is the chain of integrators.6 This is a higher order generaliza-
tion of Example 13.3. Suppose that a kth-order differential equation is given as
q(k) = u, in which q and u are scalars, and q(k) denotes the kth derivative of q with
respect to time.

A k-dimensional phase space X is defined in which

x = (q, q̇, q̈, q(3), . . . , q(k−1)). (13.36)

The state (or phase) transition equation ẋ = f(x, u) is ẋi = xi+1 for each i such
that 1 ≤ i ≤ n − 1, and ẋn = u. Together, these n individual equations are
equivalent to q(k) = u.

The initial state specifies the initial position and all time derivatives up to
order k− 1. Using these and the action u, the state trajectory can be obtained by
a chain of integrations. �

You might be wondering whether derivatives can be eliminated completely by
introducing a phase space that has high enough dimension. This does actually
work. For example, if there are second-order constraints, then a 3n-dimensional
phase space can be introduced in which x = (q, q̇, q̈). This enables constraints such
as g(q, q̇, q̈) = 0 to appear as g(x) = 0. The trouble with using such formulations
is that the state must follow the constraint surface in a way that is similar to
traversing the solution set of a closed kinematic chain, as considered in Section
4.4. This is why tangent spaces arose in that context. In either case, the set of
allowable velocities becomes constrained at every point in the space.

Problems defined using phase spaces typically have an interesting property
known as drift. This means that for some x ∈ X, there does not exist any u ∈ U
such that f(x, u) = 0. For the examples in Section 13.1.2, such an action always
existed. These were examples of driftless systems. This was possible because the
constraints did not involve dynamics. In a dynamical system, it is impossible to
instantaneously stop due to momentum, which is a form of drift. For example,
a car will “drift” into a brick wall if it is 3 meters way and traveling 100 km/hr
in the direction of the wall. There exists no action (e.g., stepping firmly on the
brakes) that could instantaneously stop the car. In general, there is no way to
instantaneously stop in the phase space.

13.2.2 Linear Systems

Now that the phase space has been defined as a special kind of state space that
can handle dynamics, it is convenient to classify the kinds of differential models
that can be defined based on their mathematical form. The class of linear systems
has been most widely studied, particularly in the context of control theory. The

6It is called this because in block diagram representations of systems it is depicted as a chain
of integrator blocks.

740 S. M. LaValle: Planning Algorithms

reason is that many powerful techniques from linear algebra can be applied to
yield good control laws [192]. The ideas can also be generalized to linear systems
that involve optimality criteria [28, 570], nature [95, 564], or multiple players [59].

Let X = Rn be a phase space, and let U = Rm be an action space for m ≤ n.
A linear system is a differential model for which the state transition equation can
be expressed as

ẋ = f(x, u) = Ax+ Bu, (13.37)

in which A and B are constant, real-valued matrices of dimensions n × n and
n×m, respectively.

Example 13.5 (Linear System Example) For a simple example of (13.37),
suppose X = R3, U = R2, and let

ẋ1
ẋ2
ẋ3

 =

0
√
2 1

1 −1 4
2 0 1

x1
x2
x3

+

1 0
0 1
1 1

(
u1
u2

)

. (13.38)

Performing the matrix multiplications reveals that all three equations are linear in
the state and action variables. Compare this to the discrete-time linear Gaussian
system shown in Example 11.25. �

Recall from Section 13.1.1 that k linear constraints restrict the velocity to an
(n − k)-dimensional hyperplane. The linear model in (13.37) is in parametric
form, which means that each action variable may allow an independent degree of
freedom. In this case, m = n − k. In the extreme case of m = 0, there are no
actions, which results in ẋ = Ax. The phase velocity ẋ is fixed for every point
x ∈ X. If m = 1, then at every x ∈ X a one-dimensional set of velocities may
be chosen using u. This implies that the direction is fixed, but the magnitude is
chosen using u. In general, the set of allowable velocities at a point x ∈ Rn is an
m-dimensional linear subspace of the tangent space Tx(R

n) (if B is nonsingular).
In spite of (13.37), it may still be possible to reach all of the state space from

any initial state. It may be costly, however, to reach a nearby point because of the
restriction on the tangent space; it is impossible to command a velocity in some
directions. For the case of nonlinear systems, it is sometimes possible to quickly
reach any point in a small neighborhood of a state, while remaining in a small
region around the state. Such issues fall under the general topic of controllability,
which will be covered in Sections 15.1.3 and 15.4.3.

Although not covered here, the observability of the system is an important
topic in control [192, 478]. In terms of the I-space concepts of Chapter 11, this
means that a sensor of the form y = h(x) is defined, and the task is to determine
the current state, given the history I-state. If the system is observable, this means
that the nondeterministic I-state is a single point. Otherwise, the system may
only be partially observable. In the case of linear systems, if the sensing model is
also linear,

y = h(x) = Cy, (13.39)

13.2. PHASE SPACE REPRESENTATION OF DYNAMICAL SYSTEMS 741

then simple matrix conditions can be used to determine whether the system is
observable [192]. Nonlinear observability theory also exists [478].

As in the case of discrete planning problems, it is possible to define differential
models that depend on time. In the discrete case, this involves a dependency on
stages. For the continuous-stage case, a time-varying linear system is defined as

ẋ = f(x(t), u(t), t) = A(t)x(t) + B(t)u(t). (13.40)

In this case, the matrix entries are allowed to be functions of time. Many powerful
control techniques can be easily adapted to this case, but it will not be considered
here because most planning problems are time-invariant (or stationary).

13.2.3 Nonlinear Systems

Although many powerful control laws can be developed for linear systems, the
vast majority of systems that occur in the physical world fail to be linear. Any
differential models that do not fit (13.37) or (13.40) are called nonlinear systems.
All of the models given in Section 13.1.2 are nonlinear systems for the special case
in which X = C.

One important family of nonlinear systems actually appears to be linear in
some sense. Let X be a smooth n-dimensional manifold, and let U ⊆ Rm. Let
U = Rm for some m ≤ n. Using a coordinate neighborhood, a nonlinear system
of the form

ẋ = f(x) +
m∑

i=1

gi(x)ui (13.41)

for smooth functions f and gi is called a control-affine system or affine-in-control
system.7 These have been studied extensively in nonlinear control theory [478,
846]. They are linear in the actions but nonlinear with respect to the state. See
Section 15.4.1 for further reading on control-affine systems.

For a control-affine system it is not necessarily possible to obtain zero velocity
because f causes drift. The important special case of a driftless control-affine
system occurs if f ≡ 0. This is written as

ẋ =
m∑

i=1

gi(x)ui. (13.42)

By setting ui = 0 for each i from 1 to m, zero velocity, ẋ = 0, is obtained.

Example 13.6 (Nonholonomic Integrator) One of the simplest examples of a
driftless control-affine system is the nonholonomic integrator introduced in control
literature by Brockett in [142]. It some times referred to as Brockett’s system, or
the Heisenberg system because it arises in quantum mechanics [112]. Let X =

7Be careful not to confuse control-affine systems with affine control systems, which are of the
form ẋ = Ax+Bu+ w, for some constant matrices A,B and a constant vector w.

742 S. M. LaValle: Planning Algorithms

R3, and let the set of actions U = R2. The state transition equation for the
nonholonomic integrator is

ẋ1 = u1

ẋ2 = u2

ẋ3 = x1u2 − x2u1.

(13.43)

�

Many nonlinear systems can be expressed implicitly using Pfaffian constraints,
which appeared in Section 13.1.1, and can be generalized from C-spaces to phase
spaces. In terms of X, a Pfaffian constraint is expressed as

g1(x)ẋ1 + g2(x)ẋ2 + · · ·+ gn(x)ẋn = 0. (13.44)

Even though the equation is linear in ẋ, a nonlinear dependency on x is allowed.
Both holonomic and nonholonomic models may exist for phase spaces, just

as in the case of C-spaces in Section 13.1.3. The Frobenius Theorem, which is
covered in Section 15.4.2, can be used to determine whether control-affine systems
are completely integrable.

13.2.4 Extending Models by Adding Integrators

The differential models from Section 13.1 may seem unrealistic in many applica-
tions because actions are required to undergo instantaneous changes. For example,
in the simple car, the steering angle and speed may be instantaneously changed
to any value. This implies that the car is capable of instantaneous acceleration
changes. This may be a reasonable approximation if the car is moving slowly
(for example, to analyze parallel-parking maneuvers). The model is ridiculous,
however, at high speeds.

Suppose a state transition equation of the form ẋ = f(x, u) is given in which
the dimension of X is n. The model can be enhanced as follows:

1. Select an action variable ui.

2. Rename the action variable as a new state variable, xn+1 = ui.

3. Define a new action variable u′i that takes the place of ui.

4. Extend the state transition equation by one dimension by introducing ẋn+1 =
u′i.

This enhancement will be referred to as placing an integrator in front of ui. This
procedure can be applied incrementally as many times as desired, to create a chain
of integrators from any action variable. It can also be applied to different action
variables.

13.2. PHASE SPACE REPRESENTATION OF DYNAMICAL SYSTEMS 743

13.2.4.1 Better unicycle models

Improvements to the models in Section 13.1 can be made by placing integrators
in front of action variables. For example, consider the unicycle model (13.18).
Instead of directly setting the speed using us, suppose that the speed is obtained
by integration of an action ua that represents acceleration. The equation ṡ = ua
is used instead of s = us, which means that the action sets the change in speed. If
ua is chosen from some bounded interval, then the speed is a continuous function
of time.

How should the transition equation be represented in this case? The set of
possible values for ua imposes a second-order constraint on x and y because double
integration is needed to determine their values. By applying the phase space idea,
s can be considered as a phase variable. This results in a four-dimensional phase
space, in which each state is (x, y, θ, s). The state (or phase) transition equation
is

ẋ = s cos θ θ̇ = uω

ẏ = s sin θ ṡ = ua, (13.45)

which should be compared to (13.18). The action us was replaced by s because
now speed is a phase variable, and an extra equation was added to reflect the
connection between speed and acceleration.

The integrator idea can be applied again to make the unicycle orientations
a continuous function of time. Let uα denote an angular acceleration action.
Let ω denote the angular velocity, which is introduced as a new state variable.
This results in a five-dimensional phase space and a model called the second-order
unicycle:

ẋ = s cos θ ṡ = ua

ẏ = s sin θ ω̇ = uα (13.46)

θ̇ = ω,

in which u = (ua, uα) is a two-dimensional action vector. In some contexts, s may
be fixed at a constant value, which implies that ua is fixed to ua = 0.

13.2.4.2 A continuous-steering car

As another example, consider the simple car. As formulated in (13.15), the steering
angle is allowed to change discontinuously. For simplicity, suppose that the speed
is fixed at s = 1. To make the steering angle vary continuously over time, let uω
be an action that represents the velocity of the steering angle: φ̇ = uω. The result
is a four-dimensional state space, in which each state is represented as (x, y, θ, φ).
This yields a continuous-steering car,

ẋ = cos θ θ̇ =
tanφ

L

ẏ = sin θ φ̇ = uω, (13.47)

744 S. M. LaValle: Planning Algorithms

in which there are two action variables, us and uω. This model was used for
planning in [849].

A second integrator can be applied to make the steering angle a C1 smooth
function of time. Let ω be a state variable, and let uα denote the angular acceler-
ation of the steering angle. In this case, the state vector is (x, y, θ, φ, ω), and the
state transition equation is

ẋ = cos θ φ̇ = ω

ẏ = sin θ ω̇ = uα (13.48)

θ̇ =
tanφ

L
.

Integrators can be applied any number of times to make any variables as smooth
as desired. Furthermore, the rate of change in each case can be bounded due to
limits on the phase variables and on the action set.

13.2.4.3 Smooth differential drive

A second-order differential drive model can be made by defining actions ul and ur
that accelerate the motors, instead of directly setting their velocities. Let ωl and
ωr denote the left and right motor angular velocities, respectively. The resulting
state transition equation is

ẋ =
r

2
(ωl + ωr) cos θ ω̇l = ul

ẏ =
r

2
(ωl + ωr) sin θ ω̇r = ur (13.49)

θ̇ =
r

L
(ωr − ωl).

In summary, an important technique for making existing models somewhat
more realistic is to insert one or more integrators in front of any action variables.
The dimension of the phase space increases with the introduction of each integra-
tor. A single integrator forces an original action to become continuous over time.
If the new action is bounded, then the rate of change of the original action is
bounded in places where it is differentiable (it is Lipschitz in general, as expressed
in (8.16)). Using a double integrator, the original action is forced to be C1 smooth.
Chaining more integrators on an action variable further constrains its values. In
general, k integrators can be chained in front of an original action to force it to be
Ck−1 smooth and respect Lipschitz bounds.

One important limitation, however, is that to make realistic models, other
variables may depend on the new phase variables. For example, if the simple car
is traveling fast, then we should not be able to turn as sharply as in the case of a
slow-moving car (think about how sharply you can turn the wheel while parallel
parking in comparison to driving on the highway). The development of better
differential models ultimately requires careful consideration of mechanics. This
provides motivation for Sections 13.3 and 13.4.

13.3. BASIC NEWTON-EULER MECHANICS 745

13.3 Basic Newton-Euler Mechanics

Mechanics is a vast and difficult subject. It is virtually impossible to provide a
thorough introduction in a couple of sections. Here, the purpose instead is to
overview some of the main concepts and to provide some models that may be used
with the planning algorithms in Chapter 14. The presentation in this section and
in Section 13.4 should hopefully stimulate some further studies in mechanics (see
the suggested literature at the end of the chapter). On the other hand, if you
are only interested in using the differential models, then you can safely skip their
derivations. Just keep in mind that all differential models produced in this section
end with the form ẋ = f(x, u), which is ready to use in planning algorithms.

There are two important points to keep in mind while studying mechanics:

1. The models are based on maintaining consistency with experimental obser-
vations about how bodies behave in the physical world. These observations
depend on the kind of experiment. In a particular application, many effects
may be insignificant or might not even be detectable by an experiment. For
example, it is difficult to detect relativistic effects using a radar gun that
measures automobile speed. It is therefore important to specify any simpli-
fying assumptions regarding the world and the kind of experiments that will
be performed in it.

2. The approach is usually to express some laws that translate into constraints
on the allowable velocities in the phase space. This means that implicit rep-
resentations are usually obtained in mechanics, and they must be converted
into parametric form. Furthermore, most treatments of mechanics do not ex-
plicitly mention action variables; these arise from the intention of controlling
the physical world. From the perspective of mechanics, the actions can be
assumed to be already determined. Thus, constraints appear as g(ẋ, x) = 0,
instead of g(ẋ, x, u) = 0.

Several formulations of mechanics arrive at the same differential constraints,
but from different mathematical reasoning. The remainder of this chapter overviews
three schools of thought, each of which is more elegant and modern than the one
before. The easiest to understand is Newton-Euler mechanics, which follows from
Newton’s famous laws of physics and is covered in this section. Lagrangian me-
chanics is covered in Section 13.4.1 and arrives at the differential constraints using
very general principles of optimization on a space of functions (i.e., calculus of
variations). Hamiltonian mechanics, covered in Section 13.4.4, defines a higher
dimensional state space on which the differential constraints can once again be
obtained by optimization.

13.3.1 The Newtonian Model

The most basic formulation of mechanics goes back to Newton and Euler, and
parts of it are commonly studied in basic physics courses. Consider a world W

746 S. M. LaValle: Planning Algorithms

defined as in Section 3.1, except here a 1D world W = R is allowed, in addition
to 2D and 3D worlds. A notion of time is also needed. The space of motions
that can be obtained in the space-time continuum can be formalized as a Galilean
group [39]; however, the presentation here will utilize standard intuitive notions
of time and Euclidean space. It is also assumed that any relativistic effects due to
curvature of the time-space continuum are nonexistent (Newton and Euler did not
know about this, and it is insignificant for most small-scale mechanical systems
on or near the earth).

Inertial coordinate frames Central to Newton-Euler mechanics is the idea
that points inW are expressed using an inertial coordinate frame. Imagine locating
the origin and axes of W somewhere in our universe. They need to be fixed in
a way that does not interfere with our observations of the basic laws of motion.
Imagine that we are playing racquetball in an indoor court and want to model
the motion of the ball as it bounces from wall to wall. If the coordinate frame
is rigidly attached to the ball, it will appear that the ball never moves; however,
the walls, earth, and the rest of the universe will appear to spin wildly around the
ball (imagine we have camera that points along some axis of the ball frame – you
could quickly become ill trying to follow the movie). If the coordinate frame is
fixed with respect to the court, then sensible measurements of the ball positions
would result (the movie would also be easier to watch). For all practical purposes,
we can consider this fixed coordinate frame to be inertial. Note, however, that the
ball will dance around wildly if the coordinate frame is instead fixed with respect
to the sun. The rotation and revolution of the earth would cause the ball to move
at incredible speeds. In reality, inertial frames do not exist; nevertheless, it is a
reasonable assumption for earth-based mechanical systems that an inertial frame
may be fixed to the earth.

The properties that inertial frames should technically possess are 1) the laws
of motions appear the same in any inertial frame, and 2) any frame that moves at
constant speed without rotation with respect to an inertial frame is itself inertial.
As an example of the second condition, suppose that the racquetball experiment is
performed inside of a big truck that is driving along a highway. Ignoring vibrations,
if the truck moves at constant speed on a straight stretch of road, then an inertial
coordinate frame can be fixed to the truck itself, and the ball will appear to bounce
as if the court was not moving. If, however, the road curves or the truck changes
its speed, the ball will not bounce the right way. If we still believe that the frame
attached to the truck is inertial, then the laws of motion will appear strange. The
inertial frame must be attached to the earth in this case to correctly model the
behavior of the truck and ball together.

Closed system Another important aspect of the Newton-Euler model is that
the system of bodies for which motions are modeled is closed, which means that
no bodies other than those that are explicitly modeled can have any affect on the
motions (imagine, for example, the effect if we forget to account for a black hole

13.3. BASIC NEWTON-EULER MECHANICS 747

that is a few hundred meters away from the racquetball court).

Newton’s laws The motions of bodies are based on three laws that were exper-
imentally verified by Newton and should hold in any inertial frame:

1. An object at rest tends to stay at rest, and an object in motion tends to stay
in motion with fixed speed, unless a nonzero resultant8 force acts upon it.

2. The relationship between a body mass m, its acceleration a, and an applied
force f is f = ma.

3. The interaction forces between two bodies are of equal magnitude and in
opposite directions.

Based on these laws, the differential constraints on a system of moving bodies can
be modeled.

13.3.2 Motions of Particles

The Newton-Euler model is described in terms of particles. Each particle is con-
sidered as a point that has an associated mass m. Forces may act on any particle.
The motion of a rigid body, covered in Section 13.3.3, is actually determined by
modeling the body as a collection of particles that are stuck together. Therefore,
it is helpful to first understand how particles behave.

13.3.2.1 Motion of a single particle

Consider the case of a single particle of mass m that moves in W = R. The force
becomes a scalar, f ∈ R. Let q(t) denote the position of the particle in W at
time t. Using this notation, acceleration is q̈, and Newton’s second law becomes
f = mq̈. This can be solved for q̈ to yield

q̈ = f/m. (13.50)

If f is interpreted as an action variable u, and if m = 1, then (13.50) is precisely
the double integrator q̈ = u from Example 13.3. Phase variables x1 = q and x2 = q̇
can be introduced to obtain a state vector x = (q, q̇). This means that for a fixed
u, the motion of the particle from any initial state can be captured by a vector
field on R2. The state transition equation is

ẋ1 = x2

ẋ2 =
u

m
,

(13.51)

in which x1 = q, x2 = q̇, and u = f . Let U = [−fmax, fmax], in which fmax repre-
sents the maximum magnitude of force that can be applied to the particle. Forces

8This is the sum of all forces acting on the point.

748 S. M. LaValle: Planning Algorithms

of arbitrarily high magnitude are not allowed because this would be physically
unrealistic.

Now generalize the particle motion to W = R2 and W = R3. Let n denote
the dimension of W , which may be n = 2 or n = 3. Let q denote the position
of the particle in W . Once again, Newton’s second law yields f = mq̈, but in
this case there are n independent equations of the form fi = mq̈i. Each of these
may be considered as an independent example of the double integrator, scaled by
m. Each component fi of the force can be considered as an action variable ui.
A 2n-dimensional state space can be defined as x = (q, q̇). The state transition
equation for n = 2 becomes

ẋ1 = x3 ẋ3 = u1/m (13.52)

ẋ2 = x4 ẋ4 = u2/m,

and for n = 3 it becomes

ẋ1 = x4 ẋ4 = u1/m

ẋ2 = x5 ẋ5 = u2/m (13.53)

ẋ3 = x6 ẋ6 = u3/m.

For a fixed action, these equations define vector fields on R4 and R6, respectively.
The action set should also be bounded, as in the one-dimensional case. Suppose
that

U = {u ∈ Rn | ‖u‖ ≤ fmax}. (13.54)

Now suppose that multiple forces act on the same particle. In this case, the
vector sum

F =
∑

f (13.55)

yields the resultant force over all f taken from a collection of forces. The resultant
force F represents a single force that is equivalent, in terms of its effect on the
particle, to the combined forces in the collection. This enables Newton’s second
law to be formulated as F = mq̈. The next two examples illustrate state transi-
tion equations that arise from a collection of forces, some of which correspond to
actions.

Example 13.7 (Lunar Lander) Using the Newton-Euler model of a particle,
an example will be constructed for which X = R4. A lunar lander is modeled as
a particle with mass m in a 2D world shown in Figure 13.8. It is not allowed to
rotate, implying that C = R2. There are three thrusters on the lander, which are
on the left, right, and bottom of the lander. The forces acting on the lander are
shown in Figure 13.8. The activation of each thruster is considered as a binary
switch. Each has its own associated binary action variable, in which the value 1
means that the thruster is firing and 0 means the thruster is dormant. The left and
right lateral thrusters provide forces of magnitude fl and fr, respectively, when
activated (note that the left thruster provides a force to the right, and vice versa).

13.3. BASIC NEWTON-EULER MECHANICS 749

mg

fu

flfr

Figure 13.8: There are three thrusters on the lunar lander, and it is under the
influence of lunar gravity. It is treated as a particle; therefore, no rotations are
possible. Four orthogonal forces may act on the lander: Three arise from thrusters
that can be switched on or off, and the remaining arises from the acceleration of
gravity.

The upward thruster, mounted to the bottom of the lander, provides a force of
magnitude fu when activated. Let g denote the scalar acceleration constant for
gravity (this is approximately 1.622 m/s2 for the moon).

From (13.55) and Newton’s second law, F = mq̈. In the horizontal direction,
this becomes

mq̈1 = ulfl − urfr, (13.56)

and in the vertical direction,

mq̈2 = uufu −mg. (13.57)

Opposing forces are subtracted because only the magnitudes are given by fl, fr,
fu, and g. If they were instead expressed as vectors in R2, then they would be
added.

The lunar lander model can be transformed into a four-dimensional phase space
in which x = (q1, q2, q̇1, q̇2). By replacing q̈1 and q̈2 with ẋ3 and ẋ4, respectively,
(13.56) and (13.57) can be written as

ẋ3 =
1

m
(ulfl − urfr) (13.58)

and

ẋ4 =
uufu
m

− g. (13.59)

750 S. M. LaValle: Planning Algorithms

mg

θ

L

Figure 13.9: The pendulum is a simple and important example of a nonlinear
system.

Using ẋ1 = x3 and ẋ2 = x4, the state transition equation becomes

ẋ1 = x3 ẋ3 =
fs
m
(ulfl − urfr)

ẋ2 = x4 ẋ4 =
uufu
m

− g, (13.60)

which is in the desired form, ẋ = f(x, u). The action space U consists of eight
elements, which indicate whether each of the three thrusters is turned on or off.
Each action vector is of the form (ul, ur, uu), in which each component is 0 or 1.
�

The next example illustrates the importance of Newton’s third law.

Example 13.8 (Pendulum) A simple and very important model is the pendu-
lum shown in Figure 13.9. Let m denote the mass of the attached particle (the
string is assumed to have no mass). Let g denote the acceleration constant due to
gravity. Let L denote the length of the pendulum string. Let θ denote the angular
displacement of the pendulum, which characterizes the pendulum configuration.
Using Newton’s second law and assuming the pendulum moves in a vacuum (no
wind resistance), the constraint

mLθ̈ = −mg sin θ (13.61)

is obtained. A 2D state space can be formulated in which x1 = θ and x2 = θ̇. This
leads to

ẋ1 = x2

ẋ2 = − g

L
sin x1,

(13.62)

13.3. BASIC NEWTON-EULER MECHANICS 751

which has no actions (the form of (13.62) is ẋ = f(x)).
A linear drag term kLθ̇ can be added to the model to account for wind resis-

tance. This yields
mLθ̈ = −mg sin θ − kLθ̇, (13.63)

which becomes

ẋ1 = x2

ẋ2 = − g

L
sin x1 −

k

m
x2

(13.64)

in the state space form.
Now consider applying a force uf on the particle, in a direction perpendicular

to the string. This action can be imagined as having a thruster attached to the
side of the particle. This adds the term uf to (13.63). Its sign depends on the
choice of the perpendicular vector (thrust to the left or to the right). The state
transition equation ẋ = f(x, u) then becomes

ẋ1 = x2

ẋ2 = − g

L
sin x1 −

k

m
x2 +

1

mL
uf .

(13.65)

�

Although sufficient information has been given to specify differential models for
a particle, several other concepts are useful to introduce, especially in the extension
to multiple particles and rigid bodies. The main idea is that conservation laws
can be derived from Newton’s laws. The linear momentum (or just momentum) d
of the particle is defined as

d = mq̇. (13.66)

This is obtained by integrating f = mq̈ with respect to time.
It will be convenient when rigid-body rotations are covered to work with the

moment of momentum (or angular momentum). A version of momentum that
is based on moments can be obtained by first defining the moment of force (or
torque) for a force f acting at a point q ∈ W as

n = q × f, (13.67)

in which × denotes the vector cross product in R3. For a particle that has linear
momentum d, the moment of momentum e is defined as

e = q × d. (13.68)

It can be shown that
de

dt
= n, (13.69)

752 S. M. LaValle: Planning Algorithms

which is equivalent to Newton’s second law but is expressed in terms of momentum.
For the motion of a particle in a closed system, the linear momentum and moment
of momentum are conserved if there are no external forces acting on it. This is
essentially a restatement of Newton’s first law.

This idea can alternatively be expressed in terms of energy, which depends on
the same variables as linear momentum. The kinetic energy of a particle is

T =
1

2
mq̇ · q̇, (13.70)

in which · is the familiar inner product (or dot product). The total kinetic energy of
a system of particles is obtained by summing the kinetic energies of the individual
particles.

13.3.2.2 Motion of a set of particles

The concepts expressed so far naturally extend to a set of particles that move
in a closed system. This provides a smooth transition to rigid bodies, which are
modeled as a collection of infinitesimal particles that are “stuck together,” causing
forces between neighboring particles to cancel. In the present model, the particles
are independently moving. If a pair of particles collides, then, by Newton’s third
law, they receive forces of equal magnitude and opposite directions at the instant
of impact.

It can be shown that all momentum expressions extend to sums over the par-
ticles [681]. For a set of particles, the linear momentum of each can be summed
to yield the linear momentum of the system as

D =
∑

d. (13.71)

The total external force can be determined as

F =
∑

fi, (13.72)

which is a kind of resultant force for the whole system. The relationship dD/dt = F
holds, which extends the case of a single particle. The total mass can be summed
to yield

M =
∑

m, (13.73)

and the center of mass of the system is

p =
1

M

∑

mq, (13.74)

in which m and q are the mass and position of each particle, respectively. The
expressions D = Mṗ and F = Mp̈ hold, which are the analogs of d = mq̇ and
f = mq̈ for a single particle.

13.3. BASIC NEWTON-EULER MECHANICS 753

So far the translational part of the motion has been captured; however, rotation
of the system is also important. This was the motivation for introducing the
moment concepts. Let the total moment of force (or total torque) be

N =
∑

q × f, (13.75)

and let the moment of momentum of the system be

E =
∑

q × d. (13.76)

It can be shown that dE/dt = N , which behaves in the same way as in the single-
particle case.

The ideas given so far make a system of particles appear very much as a single
particle. It is important, however, when conducting a simulation of their behavior
to consider the collisions between the particles. Detecting these collisions and
calculating the resulting impact forces ensures that correct motions are obtained.

As the number of particles tends to infinity, consider the limiting case of a rigid
body. In this case, the particles are “sewn” together, which cancels their internal
forces. It will be sufficient only to handle the forces that act on the boundary of
the rigid body. The expressions for the motion of a rigid body are given in Section
13.3.3. The expressions can alternatively be obtained using other concepts, such
as those in Section 13.4.

13.3.3 Motion of a Rigid Body

For a free-floating 3D rigid body, recall from Section 4.2.2 that its C-space C has six
dimensions. Suppose that actions are applied to the body as external forces. These
directly cause accelerations that result in second-order differential equations. By
defining a state to be (q, q̇), first-order differential equations can be obtained in a
twelve-dimensional phase space X.

Let A ⊆ R3 denote a free-floating rigid body. Let σ(r) denote the body density
at r ∈ A. Let m denote the total mass of A, which is defined using the density as

m =

∫

A
σ(r)dr, (13.77)

in which dr = dr1dr2dr3 represents a volume element in R3. Let p ∈ R3 denote
the center of mass of A, which is defined for p = (p1, p2, p3) as

pi =
1

m

∫

A
riσ(r)dr. (13.78)

Suppose that a collection of external forces acts on A (it is assumed that all
internal forces in A cancel each other out). Each force f acts at a point on the
boundary, as shown in Figure 13.10 (note that any point along the line of force
may alternatively be used). The set of forces can be combined into a single force

754 S. M. LaValle: Planning Algorithms

r

p

fA

Figure 13.10: A force f acting on A at r produces a moment about p of r × f .

and moment that both act about the center of mass p. Let F denote the total
external force acting on A. Let N denote the total external moment about the
center of mass of A. These are given by

F =
∑

f (13.79)

and
N =

∑

r × f (13.80)

for the collection of external forces. The terms F and N are often called the
resultant force and resultant moment of a collection of forces. It was shown by
Poinsot that every system of forces is equivalent to a single force and a moment
parallel to the line of action of the force. The result is called a wrench, which is
the force-based analog of a screw; see [681] for a nice discussion.

Actions of the form u ∈ U can be expressed as external forces and/or moments
that act on the rigid body. For example, a thruster may exert a force on the body
when activated. For a given u, the total force and moment can be resolved to
obtain F (u) and N(u).

Important frames Three different coordinate frames will become important
during the presentation:

1. Inertial frame: The global coordinate frame that is fixed with respect to
all motions of interest.

2. Translating frame: A moving frame that has its origin at the center of
mass of A and its axes aligned with the inertial frame.

3. Body frame: A frame that again has its origin at the center of mass of A,
but its axes are rigidly attached to A. This is the same frame that was used
to define bodies in Chapter 3.

13.3. BASIC NEWTON-EULER MECHANICS 755

The translational part The state transition equation involves 12 scalar equa-
tions. Six of these are straightforward to obtain by characterizing the linear veloc-
ity. For this case, it can be imagined that the body does not rotate with respect
to the inertial frame. The linear momentum is D = mṗ, and Newton’s second law
implies that

F (u) =
dD

dt
= mp̈. (13.81)

This immediately yields half of the state transition equation by solving for p̈. This
yields a 3D version of the double integrator in Example 13.3, scaled by m. Let
(p1, p2, p3) denote the coordinates of p. Let (v1, v2, v3) denote the linear velocity
the center of mass. Three scalar equations of the state transition equation are
ṗi = vi for i = 1, 2, 3. Three more are obtained as v̇i = Fi(u)/m for i = 1, 2, 3.
If there are no moments and the body is not rotating with respect to the inertial
frame, then these six equations are sufficient to describe its motion. This may
occur for a spacecraft that is initially at rest, and its thrusters apply a total force
only through the center of mass.

The rotational part The six equations derived so far are valid even if A rotates
with respect to the inertial frame. They are just the translational part of the
motion. The rotational part can be decoupled from the translational part by
using the translating frame. All translational aspects of the motion have already
been considered. Imagine that A is only rotating while its center of mass remains
fixed. Once the rotational part of the motion has been determined, it can be
combined with the translational part by simply viewing things from the inertial
frame. Therefore, the motion ofA is now considered with respect to the translating
frame, which makes it appear to be pure rotation.

Unfortunately, characterizing the rotational part of the motion is substantially
more complicated than the translation case and the 2D rotation case. This should
not be surprising in light of the difficulties associated with 3D rotations in Chapters
3 and 4.

Following from Newton’s second law, the change in the moment of momentum
is

N(u) =
dE

dt
. (13.82)

The remaining challenge is to express the right-hand side of (13.82) in a form that
can be inserted into the state transition equation.

Differential rotations To express the change in the moment of momentum in
detail, the concept of a differential rotation is needed. In the plane, it is straight-
forward to define ω = θ̇; however, for SO(3), it is more complicated. One choice
is to define derivatives with respect to yaw-pitch-roll variables, but this leads to
distortions and singularities, which are problematic for the Newton-Euler formu-
lation. Instead, a differential rotation is defined as shown in Figure 13.11. Let v

756 S. M. LaValle: Planning Algorithms

x

z

θ v

y

Figure 13.11: The angular velocity is defined as a rotation rate of the coordinate
frame about an axis.

denote a unit vector in R3, and let θ denote a rotation that is analogous to the 2D
case. Let ω denote the angular velocity vector,

ω = v
dθ

dt
. (13.83)

This provides a natural expression for angular velocity.9 The change in a rotation
matrix R with respect to time is

Ṙ = ω ×R. (13.84)

This relationship can be used to derive expressions that relate ω to yaw-pitch-roll
angles or quaternions. For example, using the yaw-pitch-roll matrix (3.42) the
conversion from ω to the change yaw, pitch, and roll angles is

γ̇

β̇
α̇

 =
1

cos β

cosα sinα 0
− sinα cos β cosα cos β 0
cosα sin β sinα sin β − cos β

ω1

ω2

ω3

 . (13.85)

Inertia matrix An inertia matrix (also called an inertia tensor or inertia oper-
ator) will be derived by considering A as a collection of particles that are rigidly
attached together (all contact forces between them cancel due to Newton’s third

9One important issue to be aware of is that the integral of ω is not path-invariant (see Example
2.15 of [994]).

13.3. BASIC NEWTON-EULER MECHANICS 757

law). The expression σ(r)dr in (13.77) represents the mass of an infinitesimal par-
ticle of A. The moment of momentum of the infinitesimal particle is r × ṙσ(r)dr.
This means that the total moment of momentum of A is

E =

∫

A(q)

(r × ṙ) σ(r)dr. (13.86)

By using the fact that ṙ = ω × r, the expression becomes

E =

∫

A(q)

r × (ω × r) σ(r)dr. (13.87)

Observe that r now appears twice in the integrand. By doing some algebraic ma-
nipulations, ω can be removed from the integrand, and a function that is quadratic
in the r variables is obtained (since r is a vector, the function is technically a
quadratic form). The first step is to apply the identity a×(b×c) = (a ·c)b−(a ·b)c
to obtain

E =

∫

A(q)

(
(r · r)ω − (r · ω)r

)
σ(r)dr. (13.88)

The angular velocity can be moved to the right to obtain

E =

(∫

A(q)

(
(r · r)I3 − rrT

)
σ(r)dr

)

ω, (13.89)

in which the integral now occurs over a 3 × 3 matrix and I3 is the 3 × 3 identity
matrix.

Let I be called the inertia matrix and be defined as

I(q) =

(∫

A(q)

(
(r · r)I3 − rrT

)
σ(r)dr

)

. (13.90)

Using the definition,
E = Iω. (13.91)

This simplification enables a concise expression of (13.82) as

N(u) =
dE

dt
=
d(Iω)

dt
= I

dω

dt
+
dI

dt
ω, (13.92)

which makes use of the chain rule.

Simplifying the inertia matrix Now the inertia matrix will be considered
more carefully. It is a symmetric 3× 3 matrix, which can be expressed as

I(q) =

I11(q) I12(q) I13(q)
I12(q) I22(q) I23(q)
I13(q) I23(q) I33(q)

 . (13.93)

758 S. M. LaValle: Planning Algorithms

For each i ∈ {1, 2, 3}, the entry Iii(q) is called a moment of inertia. The three
cases are

I11(q) =

∫

A(q)

(r22 + r23)σ(r)dr, (13.94)

I22(q) =

∫

A(q)

(r21 + r23)σ(r)dr, (13.95)

and

I33(q) =

∫

A(q)

(r21 + r22)σ(r)dr. (13.96)

The remaining entries are defined as follows. For each i, j ∈ {1, 2, 3} such that
i 6= j, the product of inertia is

Hij(q) =

∫

A(q)

rirjσ(r)dr, (13.97)

and Iij(q) = −Hij(q).
One problem with the formulation so far is that the inertia matrix changes

as the body rotates because all entries depend on the orientation q. Recall that
it was derived by considering A as a collection of infinitesimal particles in the
translating frame. It is possible, however, to express the inertia matrix in the
body frame of A. In this case, the inertia matrix can be denoted as I because it
does not depend on the orientation of A with respect to the translational frame.
The original inertia matrix is then recovered by applying a rotation that relates
the body frame to the translational frame: I(q) = RI, in which R is a rotation
matrix. It can be shown (see Equation (2.91) and Section 3.2 of [994]) that after
performing this substitution, (13.92) simplifies to

N(u) = I
dω

dt
+ ω × (Iω). (13.98)

The body frame of A must have its origin at the center of mass p; however, its
orientation has not been constrained. For different orientations, different inertia
matrices will be obtained. Since I captures the physical characteristics of A, any
two inertia matrices differ only by a rotation. This means for a given A, all
inertia matrices that can be defined by different body frame orientations have the
same eigenvalues and eigenvectors. Consider the positive definite quadratic form
xT Ix = 1, which represents the equation of an ellipsoid. A standard technique in
linear algebra is to compute the principle axes of an ellipsoid, which turn out to be
the eigenvectors of I. The lengths of the ellipsoid axes are given by the eigenvalues.
An axis-aligned expression of the ellipsoid can be obtained by defining x′ = Rx, in
which R is the matrix formed by columns of eigenvectors. Therefore, there exists
an orientation of the body frame in which the inertia matrix simplifies to

I =

I11 0 0
0 I22 0
0 0 I33

 (13.99)

13.3. BASIC NEWTON-EULER MECHANICS 759

and the diagonal elements are the eigenvalues. If the body happens to be an
ellipsoid, the principle axes correspond to the ellipsoid axes. Moment of inertia
tables are given in many texts [690]; in these cases, the principle axes are usually
chosen as the axis of the body frame because they result in the simplest expression
of I.

Completing the state transition equation Assume that the body frame of
A aligns with the principle axes. The remaining six equations of motion can finally
be given in a nice form. Using (13.99), the expression (13.98) reduces to [681]

N1(u)
N2(u)
N3(u)

 =

I11 0 0
0 I22 0
0 0 I33

ω̇1

ω̇2

ω̇3

+

0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

I11 0 0
0 I22 0
0 0 I33

ω1

ω2

ω3

 .

(13.100)

Multiplying out (13.100) yields

N1(u) = I11ω̇1 + (I33 − I22)ω2ω3

N2(u) = I22ω̇2 + (I11 − I33)ω3ω1

N3(u) = I33ω̇3 + (I22 − I11)ω1ω2.

(13.101)

To prepare for the state transition equation form, solving for ω̇ yields

ω̇1 =
(
N1(u) + (I22 − I33)ω2ω3

)
/I11

ω̇2 =
(
N2(u) + (I33 − I11)ω3ω1

)
/I22

ω̇3 =
(
N3(u) + (I11 − I22)ω1ω2

)
/I33.

(13.102)

One final complication is that ω needs to be related to angles that are used to
express an element of SO(3). The mapping between these depends on the particu-
lar parameterization of SO(3). Suppose that quaternions of the form (a, b, c, d) are
used to express rotation. Recall that a can be recovered once b, c, and d are given
using a2 + b2 + c2 + d2 = 1. The relationship between ω and the time derivatives
of the quaternion components is obtained by using (13.84) (see [690], p. 433):

ḃ = ω3c− ω2d

ċ = ω1d− ω3b

ḋ = ω2b− ω1c.

(13.103)

This finally completes the specification of ẋ = f(x, u), in which

x = (p1, p2, p3, v1, v2, v3, b, c, d, ω1, ω2, ω3) (13.104)

760 S. M. LaValle: Planning Algorithms

is a twelve-dimensional phase vector. For convenience, the full specification of the
state transition equation is

ṗ1 = v1 ḃ = ω3c− ω2d

ṗ2 = v2 ċ = ω1d− ω3b

ṗ3 = v3 ḋ = ω2b− ω1c (13.105)

v̇1 = F1(u)/m ω̇1 =
(
N1(u) + (I22 − I33)ω2ω3

)
/I11

v̇2 = F2(u)/m ω̇2 =
(
N2(u) + (I33 − I11)ω3ω1

)
/I22

v̇3 = F3(u)/m ω̇3 =
(
N3(u) + (I11 − I22)ω1ω2

)
/I33.

The relationship between inertia matrices and ellipsoids is actually much deeper
than presented here. The kinetic energy due to rotation only is elegantly expressed
as

T = 1
2
ωT Iω. (13.106)

A fascinating interpretation of rotational motion in the absence of external forces
was given by Poinsot [39, 681]. As the body rotates, its motion is equivalent to
that of the inertia ellipsoid, given by (13.106), rolling (without sliding) down a
plane with normal vector Iω in R3.

The 2D case The dynamics of a 2D rigid body that moves in the plane can be
handled as a special case of a 3D body. Let A ⊂ R2 be a 2D body, expressed in
its body frame. The total external forces acting on A can be expressed in terms of
a two-dimensional total force through the center of mass and a moment through
the center of mass. The phase space for this model has six dimensions. Three
come from the degrees of freedom of SE(2), two come from linear velocity, and
one comes from angular velocity.

The translational part is once again expressed as

F (u) =
dD

dt
= mp̈. (13.107)

This provides four components of the state transition equation.
All rotations must occur with respect to the z-axis in the 2D formulation. This

means that the angular velocity ω is a scalar value. Let θ denote the orientation
of A. The relationship between ω and θ is given by θ̇ = ω, which yields one more
component of the state transition equation.

At this point, only one component remains. Recall (13.92). By inspecting
(13.101) it can be seen that the inertia-based terms vanish. In that formulation,
ω3 is equivalent to the scalar ω for the 2D case. The final terms of all three
equations vanish because ω1 = ω2 = 0. The first terms of the first two equations
also vanish because ω̇1 = ω̇2 = 0. This leaves N3(u) = I33ω̇3. In the 2D case, this
can be notationally simplified to

N(u) =
dE

dt
=
d(Iω)

dt
= I

dω

dt
= Iω̇, (13.108)

13.3. BASIC NEWTON-EULER MECHANICS 761

in which I is now a scalar. Note that for the 3D case, the angular velocity can
change, even when N(u) = 0. In the 2D case, however, this is not possible. In
both cases, the moment of momentum is conserved; in the 2D case, this happens
to imply that ω is fixed. The sixth component of the state transition equation is
obtained by solving (13.108) for ω̇.

The state transition equation for a 2D rigid body in the plane is therefore

ṗ1 = v1 v̇1 = F1(u)/m

ṗ2 = v2 v̇2 = F2(u)/m (13.109)

θ̇ = ω ω̇ = N(u)/I.

A car with tire skidding This section concludes by introducing a car model
that considers it as a skidding rigid body in the plane. This model was suggested
by Jim Bernard. The C-space is C = R2 × S1, in which q = (x, y, θ). Suppose that
as the car moves at high speeds, the tires are able to skid laterally in a direction
perpendicular to the main axis of the car (i.e., parallel to the rear axle). Let ω
denote the angular velocity of the car. Let v denote the lateral skidding velocity,
which is another state variable. This results in a five-dimensional state space in
which each state is a vector of the form (x, y, θ, ω, v).

The position of the rear axle center can be expressed as

ẋ = s cos θ − v sin θ

ẏ = s sin θ + v cos θ,
(13.110)

which yields two components of the state transition equation. Let ω = θ̇ denote
the angular velocity, which yields one more component of the state transition
equation. This leaves only two equations, which are derived from 2D rigid body
mechanics (which will be covered in Section 13.3.3). The state transition is

ẋ = s cos θ − v sin θ

ẏ = s sin θ + v cos θ

θ̇ = ω

ω̇ = (aff − bfr)/I

v̇ = −sω + (ff + fr)/m,

(13.111)

in which ff and fr are the front and rear tire forces, m is the mass, I is the moment
of inertia, and a and b are the distances from the center of mass to the front and
rear axles, respectively. The first force is

ff = cf
(
(v + aω)/s+ φ

)
, (13.112)

in which cf is the front cornering stiffness, and φ is the steering angle. The second
force is

fr = cr(v − bω)/s, (13.113)

762 S. M. LaValle: Planning Algorithms

in which cr is the rear cornering stiffness. The steering angle can be designated as
an action variable: uφ = φ. An integrator can be placed in front of the speed to
allow accelerations. This increases the state space dimension by one.

Reasonable values for the parameters for an automotive application are: m =
1460 kg, cf = 17000, cr = 20000, a = 1.2 m, b = 1.5 m, I = 2170 kg/m2,
and s = 27 m/sec. This state transition equation involves a linear tire skidding
model, which is a poor approximation in many applications. Nonlinear tire models
provide better approximations to the actual behavior of cars [91]. For a thorough
introduction to the dynamics of cars, see [822].

13.4 Advanced Mechanics Concepts

Newton-Euler mechanics has the advantage that it starts with very basic prin-
ciples, but it has frustrating restrictions that make modeling more difficult for
complicated mechanical systems. One of the main limitations is that all laws must
be expressed in terms of an inertial frame with orthogonal axes. This section in-
troduces the basic ideas of Lagrangian and Hamiltonian mechanics, which remove
these restrictions by reducing mechanics to finding an optimal path using any coor-
dinate neighborhood of the C-space. The optimality criterion is expressed in terms
of energy. The resulting techniques can be applied on any coordinate neighborhood
of a smooth manifold. The Lagrangian formulation is usually best for determining
the motions of one or more bodies. Section 13.4.1 introduces the basic Lagrangian
concepts based on the calculus of variations. Section 13.4.2 presents a general
form of the Euler-Lagrange equations, which is useful for determining the motions
of numerous dynamical systems, including chains of bodies. The Lagrangian is
also convenient for systems that involve additional differential constraints, such as
friction or rolling wheels. These cases are briefly covered in Section 13.4.3. The
Hamiltonian formulation in Section 13.4.4 is based on a special phase space and
provides an alternative to the Lagrangian formulation. The technique generalizes
to Pontryagin’s minimum principle, a powerful optimal control technique that is
covered in Section 15.2.3.

13.4.1 Lagrangian Mechanics

13.4.1.1 Calculus of variations

Lagrangian mechanics is based on the calculus of variations, which is the subject of
optimization over a space of paths. One of the most famous variational problems
involves constraining a particle to travel along a curve (imagine that the particle
slides along a frictionless track). The problem is to find the curve for which the
ball travels from one point to the other, starting at rest, and being accelerated
only by gravity. The solution is a cycloid function called the Brachistochrone curve
[841]. Before this problem is described further, recall the classical optimization
problem from calculus in which the task is to find extremal values (minima and

13.4. ADVANCED MECHANICS CONCEPTS 763

t

x(t)

Figure 13.12: The variation is a “small” function that is added to x̃ to perturb it.

maxima) of a function. Let x̃ denote a smooth function from R to R, and let x(t)
denote its value for any t ∈ R. From standard calculus, the extremal values of x̃
are all t ∈ R for which ẋ = 0. Suppose that at some t′ ∈ R, x̃ achieves a local
minimum. To serve as a local minimum, tiny perturbations of t′ should result in
larger function values. Thus, there exists some d > 0 such that x(t′ + ǫ) > x(t′)
for any ǫ ∈ [−d, d]. Each ǫ represents a possible perturbation of t′.

The calculus of variations addresses a harder problem in which optimization
occurs over a space of functions. For each function, a value is assigned by a
criterion called a functional.10 A procedure analogous to taking the derivative
of the function and setting it to zero will be performed. This will be arrived
at by considering tiny perturbations of an entire function, as opposed to the ǫ
perturbations mentioned above. Each perturbation is itself a function, which is
called a variation. For a function to minimize a functional, any small enough
perturbation of it must yield a larger functional value. In the case of optimizing a
function of one variable, there are only two directions for the perturbation: ±ǫ. See
Figure 13.12. In the calculus of variations, there are many different “directions”
because of the uncountably infinite number of ways to construct a small variation
function that perturbs the original function (the set of all variations is an infinite-
dimensional function space; recall Example 8.5).

Let x̃ denote a smooth function from T = [t0, t1] into R. The functional is
defined by integrating a function over the domain of x̃. Let L be a smooth, real-
valued function of three variables, a, b, and c.11 The arguments of L may be any
a, b ∈ R and c ∈ T to yield L(a, b, c), but each has a special interpretation. For
some smooth function x̃, L is used to evaluate it at a particular t ∈ T to obtain
L(x, ẋ, t). A functional Φ is constructed using L to evaluate the whole function x̃

10This is the reason why a cost functional has been used throughout the book. It is a function
on a space of functions.

11Unfortunately, L is used here to represent a cost function, on which a functional Φ will
be based. This conflicts with using l as a cost function and L as the functional in motion
planning formulations. This notational collision remains because L is standard notation for the
Lagrangian. Be careful to avoid confusion.

764 S. M. LaValle: Planning Algorithms

as

Φ(x̃) =

∫

T

L(x(t), ẋ(t), t)dt. (13.114)

The problem is to select an x̃ that optimizes Φ. The approach is to take the
derivative of Φ and set it equal to zero, just as in standard calculus; however,
differentiating Φ with respect to x̃ is not standard calculus. This usually requires
special conditions on the class of possible functions (e.g., smoothness) and on the
vector space of variations, which are implicitly assumed to hold for the problems
considered in this section.

Example 13.9 (Shortest-Path Functional) As an example of a functional,
consider

L(x, ẋ, t) =
√
1 + ẋ2. (13.115)

When evaluated on a function x̃, this yields the arc length of the path. �

Another example of a functional has already been seen in the context of motion
planning. The cost functional (8.39) assigns a cost to a path taken through the
state space. This provided a natural way to formulate optimal path planning. A
discrete, approximate version was given by (7.26).

Let h be a smooth function over T , and let ǫ ∈ R be a small constant. Consider
the function defined as x(t)+ǫh(t) for all t ∈ [0, 1]. If ǫ = 0, then (13.114) remains
the same. As ǫ is increased or decreased, then Φ(x̃+ǫh) may change. The function
h is like the “direction” in a directional derivative. If for any smooth function h,
their exists some ǫ > 0 such that the value Φ(x̃ + ǫh) increases, then x̃ is called
an extremal of Φ. Any small perturbation to x̃ causes the value of Φ to increase.
Therefore, x̃ behaves like a local minimum in a standard optimization problem.

Let g = ǫh for some ǫ > 0 and function h. The differential of a functional can
be approximated as [39]

Φ(x̃+ g)− Φ(x̃) =

∫

T

(

L(x(t) + g(t), ẋ(t) + ġ(t), t)− L(x(t), ẋ(t), t)
)

dt+ · · ·

=

∫

T

(
∂L

∂x
g +

∂L

∂ẋ
ġ

)

dt+ · · ·

=

∫

T

(
∂L

∂x
g − d

dt

∂L

∂ẋ
g

)

dt+

(
∂L

∂ẋ
g

)
∣
∣
∣
∣
∣

t1

t0

+ · · · ,

(13.116)

in which · · · represents higher order terms that will vanish in the limit. The last
step follows from integration by parts:

(
∂L

∂ẋ
g

)
∣
∣
∣
∣
∣

t1

t0

=

∫

T

∂L

∂ẋ
ġdt+

∫

T

d

dt

∂L

∂ẋ
hdt, (13.117)

13.4. ADVANCED MECHANICS CONCEPTS 765

which is just uv =
∫
vdu +

∫
udv. Consider the value of (13.116) as ǫ becomes

small, and assume that h(t0) = h(t1) = 0. For x̃ to be an extremal function, the
change expressed in (13.116) should tend to zero as the variations approach zero.
Based on further technical assumptions, including the Fundamental Lemma of the
Calculus of Variations (see Section 12 of [39]), the Euler-Lagrange equation,

d

dt

∂L

∂ẋ
− ∂L

∂x
= 0, (13.118)

is obtained as a necessary condition for x̃ to be an extremum. Intuition can be
gained by studying the last line of (13.116). The integral attains a zero value pre-
cisely when (13.118) is satisfied. The other terms vanish because h(t0) = h(t1) = 0,
and higher order terms disappear in the limit process.

The partial derivatives of L with respect to ẋ and x are defined using standard
calculus. The derivative ∂L/∂ẋ is evaluated by treating ẋ as an ordinary variable
(i.e., as ∂L/∂b when the variables are named as in L(a, b, c)). Following this, the
derivative of ∂L/∂ẋ with respect to t is taken. To illustrate this process, consider
the following example.

Example 13.10 (A Simple Variational Problem) Let L be a functional de-
fined as

L(x, ẋ, t) = x3 + ẋ2. (13.119)

The partial derivatives with respect to x and ẋ are

∂L

∂x
= 3x2 (13.120)

and
∂L

∂ẋ
= 2ẋ. (13.121)

Taking the time derivative of (13.121) yields

d

dt

∂L

∂ẋ
= 2ẍ (13.122)

Substituting these into the Euler-Lagrange equation (13.118) yields

d

dt

∂L

∂ẋ
− ∂L

∂x
= 2ẍ− 3x2 = 0. (13.123)

This represents a second-order differential constraint that constrains the acceler-
ation as ẍ = 3x2/2. By constructing a 2D phase space, the constraint could be
expressed using first-order differential equations. �

766 S. M. LaValle: Planning Algorithms

13.4.1.2 Hamilton’s principle of least action

Now sufficient background has been given to return to the dynamics of mechanical
systems. The path through the C-space of a system of bodies can be expressed as
the solution to a calculus of variations problem that optimizes the difference be-
tween kinetic and potential energy. The calculus of variations principles generalize
to any coordinate neighborhood of C. In this case, the Euler-Lagrange equation is

d

dt

∂L

∂q̇
− ∂L

∂q
= 0, (13.124)

in which q is a vector of n coordinates. It is actually n scalar equations of the form

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0. (13.125)

The coming presentation will use (13.124) to obtain a phase transition equation.
This will be derived by optimizing a functional defined as the change in kinetic
and potential energy. Kinetic energy for particles and rigid bodies was defined in
Section 13.3.1. In general, the kinetic energy function must be a quadratic function
of q̇. Its definition can be interpreted as an inner product on C, which causes C
to become a Riemannian manifold [156]. This gives the manifold a notion of the
“angle” between velocity vectors and leads to well-defined notions of curvature and
shortest paths called geodesics. Let K(q, q̇) denote the kinetic energy, expressed
using the manifold coordinates, which always takes the form

K(q, q̇) = 1
2
q̇TM(q)q̇, (13.126)

in which M(q) is an n× n matrix called the mass matrix or inertia matrix.
The next step is to define potential energy. A system is called conservative

if the forces acting on a point depend only on the point’s location, and the work
done by the force along a path depends only on the endpoints of the path. The
total energy is conserved under the motion of a conservative system. In this case,
there exists a potential function φ : W → R such that F = ∂φ/∂p, for any p ∈ W .
Let V (q) denote the total potential energy of a collection of bodies, placed at
configuration q.

It will be assumed that the dynamics are time-invariant. Hamilton’s principle
of least action states that the trajectory, q̃ : T → C, of a mechanical system
coincides with extremals of the functional,

Φ(q̃) =

∫

T

(

K(q(t), q̇(t))− V (q(t))
)

dt, (13.127)

using any coordinate neighborhood of C. The principle can be seen for the case of
C = R3 by expressing Newton’s second law in a way that looks like (13.124) [39]:

d

dt
(mq̇)− ∂V

∂q
= 0, (13.128)

13.4. ADVANCED MECHANICS CONCEPTS 767

in which the force is replaced by the derivative of potential energy. This suggests
applying the Euler-Lagrange equation to the functional

L(q, q̇) = K(q, q̇)− V (q), (13.129)

in which it has been assumed that the dynamics are time-invariant; hence, L(q, q̇, t) =
L(q, q̇). Applying the Euler-Lagrange equation to (13.127) yields the extremals.

The advantage of the Lagrangian formulation is that the C-space does not
have to be C = R3, described in an inertial frame. The Euler-Lagrange equation
gives a necessary condition for the motions in any C-space of a mechanical system.
The conditions can be expressed in terms of any coordinate neighborhood, as op-
posed to orthogonal coordinate systems, which are required by the Newton-Euler
formulation. In mechanics literature, the q variables are often referred to as gen-
eralized coordinates. This simply means the coordinates given by any coordinate
neighborhood of a smooth manifold.

Thus, the special form of (13.124) that uses (13.129) yields the appropriate
constraints on the motion:

d

dt

∂L

∂q̇
− ∂L

∂q
=

d

dt

∂K(q, q̇)

∂q̇
− ∂K(q, q̇)

∂q
+
∂V (q)

∂q
= 0. (13.130)

Recall that this represents n equations, one for each coordinate qi. Since K(q, q̇)
does not depend on time, the d/dt operator simply replaces q̇ by q̈ in the calculated
expression for ∂K(q, q̇)/∂q̇. The appearance of q̈ seems appropriate because the
resulting differential equations are second-order, which is consistent with Newton-
Euler mechanics.

Example 13.11 (A Falling Particle) Suppose that a particle with mass m is
falling in R3. Let (q1, q2, q3) denote the position of the particle. Let g denote
the acceleration constant of gravity in the −q3 direction. The potential energy is
V (q) = mgq3. The kinetic energy is

K(q, q̇) = 1
2
mq̇ · q̇ = 1

2
m(q̇21 + q̇22 + q̇23). (13.131)

The Lagrangian is

L(q, q̇) = K(q, q̇)− V (q) = 1
2
m(q̇21 + q̇22 + q̇23)−mgq3 = 0. (13.132)

To obtain the differential constraints on the motion of the particle, use (13.130).
For each i from 1 to 3,

d

dt

∂L

∂q̇
=

d

dt
(mq̇i) = mq̈i (13.133)

Since K(q, q̇) does not depend on q, the derivative ∂K/∂qi = 0 for each i. The
derivatives with respect to potential energy are

∂V

∂q1
= 0

∂V

∂q2
= 0

∂V

∂q3
= mg. (13.134)

768 S. M. LaValle: Planning Algorithms

Substitution into (13.130) yields three equations:

mq̈1 = 0 mq̈2 = 0 mq̈3 +mg = 0. (13.135)

These indicate that acceleration only occurs in the −q3 direction, and this is due
to gravity. The equations are consistent with Newton’s laws. As usual, a six-
dimensional phase space can be defined to obtain first-order differential constraints.
�

The “least” part of Hamilton’s principle is actually a misnomer. It is technically
only a principle of “extremal” action because (13.130) can also yield motions that
maximize the functional.

13.4.1.3 Applying actions

Up to this point, it has been assumed that no actions are applied to the mechanical
system. This is the way the Euler-Lagrange equation usually appears in physics
because the goal is to predict motion, rather than control it. Let u ∈ Rn denote an
action vector. Actions can be applied to the Lagrangian formulation as generalized
forces that “act” on the right side of the Euler-Lagrange equation. This results in

d

dt

∂L

∂q̇
− ∂L

∂q
= u. (13.136)

The actions force the mechanical system to deviate from its usual behavior. In
some instances, the true actions may be expressed in terms of other variables, and
then u is obtained by a transformation (recall transforming action variables for
the differential drive vehicle of Section 13.1.2). In this case, u may be replaced in
(13.136) by φ(u) for some transformation φ. In this case, the dimension of u need
not be n.

13.4.1.4 Procedure for deriving the state transition equation

The following general procedure can be followed to derive the differential model us-
ing Lagrangian mechanics on a coordinate neighborhood of a smooth n-dimensional
manifold:

1. Determine the degrees of freedom of the system and define the appropriate
n-dimensional smooth manifold C.

2. Express the kinetic energy as a quadratic form in the configuration velocity
components:

K(q, q̇) =
1

2
q̇TM(q)q̇ =

1

2

n∑

i=1

n∑

j=1

mij(q)q̇iq̇j. (13.137)

13.4. ADVANCED MECHANICS CONCEPTS 769

3. Express the potential energy V (q).

4. Let L(q, q̇) = K(q, q̇)− V (q) be the Lagrangian function, and use the Euler-
Lagrange equation (13.130) to determine the differential constraints.

5. Convert to phase space form by letting x = (q, q̇). If possible, solve for ẋ to
obtain ẋ = f(x, u).

Example 13.12 (2D Rigid Body Revisited) The equations in (13.109) can
be alternatively derived using the Euler-Lagrange equation. Let C = R2 × S1, and
let (q1, q2, q3) = (x, y, θ) to conform to the notation used to express the Lagrangian.

The kinetic energy is the sum of kinetic energies due to linear and angular
velocities, respectively. This yields

K(q, q̇) = 1
2
mq̇ · q̇ + 1

2
Iq̇23, (13.138)

in which m and I are the mass and moment of inertia, respectively. Assume there
is no gravity; hence, V (q) = 0 and L(q, q̇) = K(q, q̇).

Suppose that generalized forces u1, u2, and u3 can be applied to the configu-
ration variables. Applying the Euler-Lagrange equation to L(q, q̇) yields

d

dt

∂L

∂q̇1
− ∂L

∂q1
=

d

dt
(mq̇1) = mq̈1 = u1

d

dt

∂L

∂q̇2
− ∂L

∂q2
=

d

dt
(mq̇2) = mq̈2 = u2

d

dt

∂L

∂q̇3
− ∂L

∂q3
=

d

dt
(Iq̇3) = Iq̈3 = u3.

(13.139)

These expressions are equivalent to those given in (13.109). One difference is that
conversion to the phase space is needed. The second difference is that the action
variables in (13.139) do not refer directly to forces and moments. They are in-
stead interpreted as generalized forces that act on the configuration variables. A
conversion should be performed if the original actions in (13.109) are required. �

13.4.2 General Lagrangian Expressions

As more complicated mechanics problems are considered, it is convenient to express
the differential constraints in a general form. For example, evaluating (13.130) for
a kinematic chain of bodies leads to very complicated expressions. The terms
of these expressions, however, can be organized into standard forms that appear
simpler and give some intuitive meanings to the components.

Suppose that the kinetic energy is expressed using (13.126), and let mij(q)
denote an entry of M(q). Suppose that the potential energy is V (q). By per-
forming the derivatives expressed in (13.136), the Euler-Lagrange equation can be

770 S. M. LaValle: Planning Algorithms

expressed as n scalar equations of the form [856]

n∑

j=1

mij(q)q̈j +
n∑

j=1

n∑

k=1

hijk(q)q̇j q̇k + gi(q) = ui (13.140)

in which

hijk =
∂mij

∂qk
− 1

2

∂mjk

∂qi
. (13.141)

There is one equation for each i from 1 to n. The components of (13.140) have
physical interpretations. The mii coefficients represent the inertia with respect
to qi. The mij represent the affect on qj of accelerating qi. The hijj q̇

2
j terms

represent the centrifugal effect induced on qi by the velocity of qj. The hijkq̇j q̇k
terms represent the Coriolis effect induced on qi by the velocities of qj and qk. The
gi term usually arises from gravity.

An alternative to (13.140) is often given in terms of matrices. It can be shown
that the Euler-Lagrange equation reduces to

M(q)q̈ + C(q, q̇)q̇ + g(q) = u, (13.142)

which represents n scalar equations. This introduces C(q, q̇), which is an n × n
Coriolis matrix. It turns out that many possible Coriolis matrices may produce
equivalent different constraints. With respect to (13.140), the Coriolis matrix must
be chosen so that

n∑

j=1

cij q̇j =
n∑

j=1

n∑

k=1

hijkq̇j q̇k. (13.143)

Using (13.141),

n∑

j=1

cij q̇j =
n∑

j=1

n∑

k=1

(
∂mij

∂qk
− 1

2

∂mjk

∂qi

)

q̇j q̇k. (13.144)

A standard way to determine C(q, q̇) is by computing Christoffel symbols. By

subtracting 1
2

∂mjk

∂qi
from the inside of the nested sums in (13.144), the equation can

be rewritten as

n∑

j=1

cij q̇j =
1

2

n∑

j=1

n∑

k=1

∂mij

∂qk
q̇j q̇k +

1

2

n∑

j=1

n∑

k=1

(
∂mij

∂qk
− ∂mjk

∂qi

)

q̇j q̇k. (13.145)

This enables an element of C(q, q̇) to be written as

cij =
n∑

k=1

cijkq̇k, (13.146)

in which

cijk =
1

2

(
∂mij

∂qk
+
∂mik

∂qj
− ∂mjk

∂qi

)

. (13.147)

13.4. ADVANCED MECHANICS CONCEPTS 771

θ1

θ2

ℓ1

d1

ℓ2

A1

A2

p

x

y

Figure 13.13: Parameter values for a two-link robot with two revolute joints.

This is called a Christoffel symbol, and it is obtained from (13.145). Note that
cijk = cikj. Christoffel symbols arise in the study of affine connections in differential
geometry and are usually denoted as Γijk. Affine connections provide a way to
express acceleration without coordinates, in the same way that the tangent space
was expressed without coordinates in Section 8.3.2. For affine connections in
differential geometry, see [133]; for their application to mechanics, see [156].

13.4.2.1 Conversion to a phase transition equation

The final step is to convert the equations into phase space form. A 2n-dimensional
phase vector is introduced as x = (q, q̇). The task is to obtain ẋ = f(x, u), which
represents 2n scalar equations. The first n equations are ẋi = xn+i for i from 1 to
n. The final n equations are obtained by solving for q̈.

Suppose that the general form in (13.142) is used. Solving for q̈ yields

q̈ =M(q)−1(u− C(q, q̇)q̇ − g(q)). (13.148)

The phase variables are then substituted in a straightforward manner. Each q̈i for
i from 1 to n becomes ẋn+i, and M(q), C(q, q̇), and g(q) are expressed in terms of
x. This completes the specification of the phase transition equation.

Example 13.13 (Two-Link Manipulator) Figure 13.13 shows a two-link ma-
nipulator for which there are two revolute joints and two links, A1 and A2. Hence,
C = S1 × S1. Let q = (θ1, θ2) denote a configuration. Each of the two joints is
controlled by a motor that applies a torque ui. Let u1 apply to the base, and let
u2 apply to the joint between A1 and A2. Let d1 be the link length of A1. Let ℓi
be the distance from the Ai origin to its center of mass. For each Ai, let mi and
Ii be its mass and moment of inertia, respectively.

772 S. M. LaValle: Planning Algorithms

The kinetic energy of A1 is

K1(q̇) =
1
2
m1ℓ1θ̇

2
1 +

1
2
I1θ̇

2
1, (13.149)

and the potential energy of A1 is

V1(q) = m1gℓ1 sin θ1. (13.150)

The kinetic energy of A2 is

K2(q̇) =
1
2
p · p+ 1

2
I2(θ̇1 + θ̇2)

2, (13.151)

in which p denotes the position of the center of mass of A1 and is given from (3.53)
as

p1 = d1 cos θ1 + ℓ2 cos θ2

p2 = d1 sin θ1 + ℓ2 sin θ2.
(13.152)

The potential energy of A2 is

V2(q) = m2g(d1 sin θ1 + ℓ2 sin θ2). (13.153)

At this point, the Lagrangian function can be formed as

L(q, q̇) = K1(θ̇1) +K2(θ̇1, θ̇2)− V1(θ1)− V2(θ1, θ2) (13.154)

and inserted into (13.118) to obtain the differential constraints in implicit form,
expressed in terms of q̈, q̇, and q. Conversion to the phase space is performed
by solving the implicit constraints for q̈ and assigning x = (q, q̇), in which x is a
four-dimensional phase vector.

Rather than performing the computations directly using (13.118), the con-
straints can be directly determined using (13.140). The terms are

M(q) =

(
m11 m12

m21 m22

)

, (13.155)

in which

m11 = I1 +m1ℓ
2
1 + I2 +m2(d

2
1 + ℓ22 + 2d1ℓ2 cos θ2)

m12 = m21 = I2 +m2(ℓ
2
2 + d1ℓ2 cos θ2)

m22 = I2 +m2ℓ
2
2,

(13.156)

13.4. ADVANCED MECHANICS CONCEPTS 773

and

c111 =
1

2

∂m11

∂θ1
= 0

c112 = c121 =
1

2

∂m11

∂θ2
= −m2ℓ1ℓ2p2

c122 =
∂m12

∂θ2
− 1

2

∂m22

∂θ1
= −m2ℓ1ℓ2p2

c211 =
∂m21

∂θ1
− 1

2

∂m11

∂θ2
= m2ℓ1ℓ2p2

c212 = c221 =
1

2

∂m22

∂θ1
= 0

c222 =
1

2

∂m22

∂θ2
= 0.

(13.157)

The final term is defined as

g1 = (m1ℓ1 +m2d1)gp1 +m1ℓ2p2

g2 = m2ℓ2gp2.
(13.158)

The dynamics can alternatively be expressed using M(q), C(q, q̇), and g(q) in
(13.142). The Coriolis matrix is defined using (13.143) to obtain

C(q, q̇) = −m2ℓ1ℓ2p2

(
θ̇2 θ̇1 + θ̇2
θ̇1 0

)

, (13.159)

in which p2 is defined in (13.152) and is a function of q. For convenience, let

r = m2ℓ1ℓ2p2. (13.160)

The resulting expression, which is now a special form of (13.142), is

m11θ̈1 +m12θ̈2 − 2rθ̇1θ̇2 − rθ̇22 + g1(q) = u1

m22θ̈1 +m21θ̈2 + rθ̇21 + g2(q) = u2.
(13.161)

The phase transition equation is obtained by letting x = (θ1, θ2, θ̇1, θ̇2) and
substituting the state variables into (13.161). The variables θ̈1 and θ̈2 become ẋ3
and ẋ4, respectively. The equations must be solved for ẋ3 and ẋ4. An extension
of this model to motors that have gear ratios and nonnegligible mass appears in
[856]. �

The example provided here barely scratches the surface on the possible systems
that can be elegantly modeled. Many robotics texts cover cases in which there are
more links, different kinds of joints, and frictional forces [366, 725, 856, 907, 994].

The phase transition equation for chains of bodies could alternatively be de-
rived using the Newton-Euler formulation of mechanics. Even though the La-
grangian form is more elegant, the Newton-Euler equations, when expressed re-
cursively, are far more efficient for simulations of multibody dynamical systems
[366, 863, 994].

774 S. M. LaValle: Planning Algorithms

13.4.3 Extensions of the Euler-Lagrange Equations

Several extensions of the Euler-Lagrange equation can be constructed to handle
complications that arise in addition to kinetic energy and potential energy in a
conservative field. Each extension usually involves adding more terms to (13.129)
to account for the new complication. Problems that can be handled in this way
are closed kinematic chains, nonholonomic constraints, and nonconservative forces
(such as friction).

13.4.3.1 Incorporating velocity constraints

The Lagrangian formulation of Section 13.4.1 can be extended to allow additional
constraints placed on q and q̇. This is very powerful for developing state transition
equations for robots that have closed kinematic chains or wheeled bodies. If there
are closed chains, then the configurations may be restricted to lie in a subset of
C. If a parameterization of the solution set is possible, then C can be redefined
over the reduced C-space. This is usually not possible, however, because such a
parametrization is difficult to obtain, as mentioned in Section 4.4. If there are
wheels or other contact-based constraints, such as those in Section 13.1.3, then
extra constraints on q and q̇ exist. Dynamics can be incorporated into the models
of Section 13.1 by extending the Euler-Lagrange equation.

The coming method will be based on Lagrange multipliers. Recall from stan-
dard calculus that to optimize a function h defined over Rn, subject to an implicit
constraint g(x) = 0, it is sufficient to consider only the extrema of

h(x) + λg(x), (13.162)

in which λ ∈ R represents a Lagrange multiplier [508]. The extrema are found by
solving

∇h(x) + λ∇g(x) = 0, (13.163)

which expresses n equations of the form

∂h

∂xi
+ λ

∂g

∂xi
= 0. (13.164)

The same principle applies for handling velocity constraints on C.
Suppose that there are velocity constraints on C as considered in Section 13.1.

Consider implicit constraints, in which there are k equations of the form gi(q, q̇) = 0
for i from 1 to k. Parametric constraints can be handled as a special case of implicit
constraints by writing

gi(q, q̇) = q̇i − fi(q, u) = 0. (13.165)

For any constraints that contain actions u, no extra difficulties arise. Each ui is
treated as a constant in the following analysis. Therefore, action variables will not
be explicitly named in the expressions.

13.4. ADVANCED MECHANICS CONCEPTS 775

As before, assume time-invariant dynamics (see [789] for the time-varying case).
Starting with L(q, q̇) defined using (13.130), let the new criterion be

Lc(q, q̇, λ) = L(q, q̇) +
k∑

i=1

λigi(q, q̇). (13.166)

A functional Φc is defined by substituting Lc for L in (13.114).
The extremals of Φc are given by n equations,

d

dt

∂Lc
∂q̇i

− ∂Lc
∂qi

= 0, (13.167)

and k equations,
d

dt

∂Lc

∂λ̇i
− ∂Lc
∂λi

= 0. (13.168)

The justification for this is the same as for (13.124), except now λ is included.
The equations of (13.168) are equivalent to the constraints gi(q, q̇) = 0. The first
term of each is zero because λ̇ does not appear in the constraints, which reduces
them to

∂Lc
∂λi

= 0. (13.169)

This already follows from the constraints on extremals of L and the constraints
gi(q, q̇) = 0. In (13.167), there are n equations in n+k unknowns. The k Lagrange
multipliers can be eliminated by using the k constraints gi(q, q̇) = 0. This cor-
responds to Lagrange multiplier elimination in standard constrained optimization
[508].

The expressions in (13.167) and the constraints gi(q, q̇) may be quite compli-
cated, which makes the determination of a state transition equation challenging.
General forms are given in Section 3.8 of [789]. An important special case will be
considered here. Suppose that the constraints are Pfaffian,

gi(q, q̇) =
n∑

j=1

gij(q)q̇j = 0, (13.170)

as introduced in Section 13.1. This includes the nonholonomic velocity constraints
due to wheeled vehicles, which were presented in Section 13.1.2. Furthermore, this
includes the special case of constraints of the form gi(q) = 0, which models closed
kinematic chains. Such constraints can be differentiated with respect to time to
obtain

d

dt
gi(q) =

n∑

j=1

∂gi
∂qj

q̇j =
n∑

j=1

gij(q)q̇j = 0, (13.171)

which is in the Pfaffian form. This enables the dynamics of closed chains, con-
sidered in Section 4.4, to be expressed without even having a parametrization of

776 S. M. LaValle: Planning Algorithms

the subset of C that satisfies the closure constraints. Starting in implicit form,
differentiation is required to convert them into the Pfaffian form.

For the important case of Pfaffian constraints, (13.167) simplifies to

d

dt

∂L

∂q̇i
− ∂L

∂qi
+

k∑

j=1

λjgji(q) = 0, (13.172)

The Pfaffian constraints can be used to eliminate the Lagrange multipliers, if
desired. Note that gji represents the ith term of the jth Pfaffian constraint. An
action variable ui can be placed on the right side of each constraint, if desired.

Equation (13.172) often appears instead as

d

dt

∂L

∂q̇i
− ∂L

∂qi
=

k∑

l=1

λjgji(q, q̇), (13.173)

which is an alternative but equivalent expression of constraints because the La-
grange multipliers can be negated without affecting the existence of extremals.
In this case, a nice interpretation due to D’Alembert can be given. Expressions
that appear on the right of (13.173) can be considered as actions, as mentioned in
Section 13.4.1. As stated previously, such actions are called generalized forces in
mechanics. The principle of virtual work is obtained by integrating the reaction
forces needed to maintain the constraints. These reaction forces are precisely given
on the right side of (13.173). Due to the cancellation of forces, no true work is
done by the constraints (if there is no friction).

Example 13.14 (A Particle on a Sphere) Suppose that a particle travels on
a unit sphere without friction or gravity. Let (q1, q2, q3) ∈ R3 denote the position
of the point. The Lagrangian function is the kinetic energy,

L(q, q̇) = 1
2
m(q̇21 + q̇22 + q̇23), (13.174)

in which m is the particle mass. For simplicity, assume that m = 2.
The constraint that the particle must travel on a sphere yields

g1(q) = q21 + q22 + q23 − 1 = 0. (13.175)

This can be put into Pfaffian form by time differentiation to obtain

2q1q̇1 + 2q2q̇2 + 2q3q̇3 = 0. (13.176)

Since k = 1, there is a single Lagrange multiplier λ1. Applying (13.172) yields
three equations,

q̈i − 2qiλ1 = 0, (13.177)

for i from 1 to 3. The generic form of the solution is

c1q1 + c2q2 + c3q3 = 0, (13.178)

13.4. ADVANCED MECHANICS CONCEPTS 777

in which the ci are real-valued constants that can be determined from the initial
position of the particle. This represents the equation of a plane through the origin.
The intersection of the plane with the sphere is a great circle. This implies that
the particle moves between two points by traveling along the great circle. These
are the shortest paths (geodesics) on the sphere. �

The general forms in Section 13.4.2 can be extended to the constrained case.
For example, (13.142) generalizes to

M(q)q̈ + C(q, q̇)q̇ + g(q) +G(q)Tλ = u, (13.179)

in which G is a n× k matrix that represents all of the gji Pfaffian coefficients. In
this case, the Lagrange multipliers can be computed as [725]

λ =
(
G(q)M(q)−1G(q)T

)−1
G(q)M(q)−1

(
u− C(q, q̇)q̇

)
, (13.180)

assuming G is time-invariant.
The phase transition equation can be determined in the usual way by perform-

ing the required differentiations, defining the 2n phase variables, and solving for
ẋ. The result generalizes (13.148).

13.4.3.2 Nonconservative forces

The Lagrangian formulation has been extended so far to handle constraints on
C that lower the dimension of the tangent space. The formulation can also be
extended to allow nonconservative forces. The most common and important ex-
ample in mechanical systems is friction. The details of friction models will not be
covered here; see [681]. As examples, friction can arise when bodies come into con-
tact, as in the joints of a robot manipulator, and as bodies move through a fluid,
such as air or water. The nonconservative forces can be expressed as additional
generalized forces, expressed in an n× 1 vector of the form B(q, q̇). Suppose that
an action vector is also permitted. The modified Euler-Lagrange equation then
becomes

d

dt

∂L

∂q̇
− ∂L

∂q
= u− B(q̇, q). (13.181)

A common extension to (13.142) is

M(q)q̈ + C(q, q̇)q̇ +N(q, q̇) = u, (13.182)

in which N(q, q̇) generalizes g(q) to include nonconservative forces. This can be
generalized even further to include Pfaffian constraints and Lagrange multipliers,

M(q)q̈ + C(q, q̇)q̇ +N(q, q̇) +G(q)Tλ = u. (13.183)

The Lagrange multipliers become [725]

λ =
(
G(q)M(q)−1G(q)T

)−1
G(q)M(q)−1

(
u− C(q, q̇)q̇ −N(q, q̇)

)
. (13.184)

Once again, the phase transition equation can be derived in terms of 2n phase
variables and generalizes (13.148).

778 S. M. LaValle: Planning Algorithms

13.4.4 Hamiltonian Mechanics

The Lagrangian formulation of mechanics is the most convenient for determin-
ing a state transition equation for a collection of bodies. Once the kinetic and
potential energies are determined, the remaining efforts are straightforward com-
putation of derivatives and algebraic manipulation. Hamiltonian mechanics pro-
vides an alternative formulation that is closely related to the Lagrangian. Instead
of expressing second-order differential constraints on an n-dimensional C-space,
it expresses first-order constraints on a 2n-dimensional phase space. This idea
should be familiar from Section 13.2. The new phase space considered here is an
example of a symplectic manifold, which has many important properties, such as
being orientable and having an even number of dimensions [39]. The standard
phase vector is defined as x = (q, q̇); however, instead of q̇, n variables will be
introduced and denoted as p. Thus, a transformation exists between (q, q̇) and
(p, q). The p variables are related to the configuration variables through a special
function over the phase space called the Hamiltonian. Although the Hamiltonian
formulation usually does not help in the determination of ẋ = f(x, u), it is covered
here because its generalization to optimal control problems is quite powerful. This
generalization is called Pontryagin’s minimum principle and is covered in Section
15.2.3. In the context of mechanics, it provides a general expression of energy
conservation laws, which aids in proving many theoretical results [39, 397].

The relationship between (q, q̇) and (p, q) can be obtained by using the Legendre
transformation [39, 397]. Consider a real-valued function f of two variables, x, y ∈
R. Its total differential [508] is

df = u dx+ v dy, (13.185)

in which

u =
∂f

∂x
and v =

∂f

∂y
. (13.186)

Consider constructing a total differential that depends on du and dy, instead of
dx and dy. Let g be a function of u and y defined as

g(u, y) = ux− f. (13.187)

The total differential of g is

dg = x du+ u dx− df. (13.188)

Using (13.185) to express df , this simplifies to

dg = x du− v dy. (13.189)

The x and v variables are now interpreted as

x =
∂g

∂u
v = −∂g

∂y
, (13.190)

13.4. ADVANCED MECHANICS CONCEPTS 779

which appear to be a kind of inversion of (13.186). This idea will be extended to
vector form to arrive the Hamiltonian formulation.

Assume that the dynamics do not depend on the particular time (the exten-
sion to time-varying dynamics is not difficult; see [39, 397]). Let L(q, q̇) be the
Lagrangian function defined (13.129). Let p ∈ Rn represent a generalized momen-
tum vector (or adjoint variables), which serves the same purpose as u in (13.185).
Each pi is defined as

pi =
∂L

∂q̇i
. (13.191)

In some literature, p is instead denoted as λ because it can also be interpreted as
a vector of Lagrange multipliers. The Hamiltonian function is defined as

H(p, q) = p · q̇ − L(q, q̇) =
n∑

i=1

piq̇i − L(q, q̇) (13.192)

and can be interpreted as the total energy of a conservative system [397]. This is a
vector-based extension of (13.187) in which L and H replace f and g, respectively.
Also, p and q are the vector versions of u and x, respectively.

Considered as a function of p and q only, the total differential of H is

dH =
n∑

i=1

∂H

∂pi
dpi +

n∑

i=1

∂H

∂qi
dqi. (13.193)

Using (13.192), dH can be expressed as

dH =
n∑

i=1

q̇i dpi +
n∑

i=1

pi dq̇i −
n∑

i=1

∂L

∂q̇i
dq̇i −

n∑

i=1

∂L

∂qi
dqi. (13.194)

The dq̇i terms all cancel by using (13.191), to obtain

dH =
n∑

i=1

q̇i dpi −
n∑

i=1

∂L

∂qi
dqi. (13.195)

Using (13.118),

ṗ =
∂L

∂qi
. (13.196)

This implies that

dH =
n∑

i=1

q̇i dpi −
n∑

i=1

ṗi dqi. (13.197)

Equating (13.197) and (13.193) yields 2n equations called Hamilton’s equations:

q̇i =
∂H

∂pi
ṗi =

∂H

∂qi
, (13.198)

780 S. M. LaValle: Planning Algorithms

for each i from 1 to n. These equations are analogous to (13.190).
Hamilton’s equations are equivalent to the Euler-Lagrange equation. Extremals

in both cases yield equivalent differential constraints. The difference is that the
Lagrangian formulation uses (q, q̇) and the Hamiltonian uses (p, q). The Hamilto-
nian results in first-order partial differential equations. It was assumed here that
the dynamics are time-invariant and the motions occur in a conservative field.
In this case, dH = 0, which corresponds to conservation of total energy. In the
time-varying case, the additional equation ∂H/∂t = −∂L/∂t appears along with
Hamilton’s equations. As stated previously, Hamilton’s equations are primarily
of interest in establishing basic results in theoretical mechanics, as opposed to
determining the motions of particular systems. For example, the Hamiltonian is
used to establish Louisville’s theorem, which states that phase flows preserve vol-
ume, implying that a Hamiltonian system cannot be asymptotically stable [39].
Asymptotic stability is covered in Section 15.1.1. Pontryagin’s minimum princi-
ple, an extension of Hamilton’s equations to optimal control theory, is covered in
15.2.3.

13.5 Multiple Decision Makers

Differential models can be extended to model the interaction of multiple decision
makers. This leads to continuous-time extensions of sequential decision making,
from Formulation 10.1, and sequential games, from Formulation 10.4. A differen-
tial version of the state transition equation can be made for these extensions.

13.5.1 Differential Decision Making

To make a differential game against nature that extends Formulation 10.1 to con-
tinuous time, suppose that nature actions θ(t) are chosen from Θ. A differential
model can be defined as

ẋ = f(x, u, θ). (13.199)

The state space X and action space U are used in the same way as throughout
this chapter. The difference only comes in the state transition equation. State-
dependent nature action spaces may also be used.

As observed repeatedly throughout Part III, nature can be modeled nondeter-
ministically or probabilistically. In the nondeterministic case, (13.199) is equiva-
lent to a differential inclusion [53]:

ẋ ∈ {ẋ′ | ∃θ ∈ Θ such that ẋ′ = f(x, u, θ)}. (13.200)

Possible future values for ẋ can be computed using forward projections. Reachable
sets, which will be introduced in Section 14.2.1, can be defined that characterize
the evolution of future possible states over time. Plans constructed under this
model usually use worst-case analysis.

13.5. MULTIPLE DECISION MAKERS 781

Example 13.15 (Nondeterministic Forward Projection) As a simple ex-
ample of using (13.199), consider expressing the uncertainty model used in the
preimage planning framework of Section 12.5.1.

At each time t ≥ 0, nature chooses some θ ∈ Θ(t). The state transition
equation is

ẋ = u+ θ. (13.201)

The cone shown in Figure 12.45 is just the nondeterministic forward projection
under the application of a constant u ∈ U . �

In the probabilistic case, restrictions must be carefully placed on the nature
action trajectory (e.g., a Weiner process [910]). Under such conditions, (13.199) be-
comes a stochastic differential equation. Planning in this case becomes continuous-
time stochastic control [567], and the task is to optimize the expected cost.

Example 13.16 (A Simple Car and Nature) Uncertainty can be introduced
into any of the models of this chapter. For example, recall the simple car, (13.15).
Suppose that nature interferes with the steering action so that it is not precisely
known in which direction the car will drive. Let Θ = [−θmax, θmax], in which
θmax ∈ (0, π/2) represents the maximum amount of steering angle error that can
be caused by nature. The simple-car model can be modified to account for this
error as

ẋ = us cos θ

ẏ = us sin θ

θ̇ =
us
L

tan(uφ + γ),

(13.202)

in which the domain of tan must be extended to R or other suitable restrictions
must be imposed. At each time t, a nature action12 γ ∈ Θ causes the true heading
of the car to be perturbed from the commanded direction uφ. Under nondetermin-
istic uncertainty, the maximum amount that the car deviates from the commanded
direction must be determined by the planning algorithm. A probability density
function p(γ) can be assigned to obtain a probabilistic model. When integrated
over time, (13.202) yields probability density functions over future car configura-
tions [1004]. �

In a similar way, parameters that account for nature can be introduced virtually
anywhere in the models of this chapter. Some errors may be systematic, which
reflect mistakes or simplifications made in the modeling process. These correspond
to a constant nature action applied at the outset. In this case, nature is not
allowed to vary its action over time. Other errors could correspond to noise, which
is expected to yield different nature actions over time.

12The notation γ is used instead of θ to avoid conflicting with the car orientation variable θ
in this particular example.

782 S. M. LaValle: Planning Algorithms

13.5.2 Differential Game Theory

The extension of sequential game theory to the continuous-time case is called
differential game theory (or dynamic game theory [59]), a subject introduced by
Isaacs [477]. All of the variants considered in Sections 9.3, 9.4, 10.5 are possible:

1. There may be any number of players.

2. The game may be zero-sum or nonzero-sum.

3. The state may or may not be known. If the state is unknown, then interesting
I-spaces arise, similar to those of Section 11.7.

4. Nature can interfere with the game.

5. Different equilibrium concepts, such as saddle points and Nash equilibria,
can be defined.

See [59] for a thorough overview of differential games. Two players, P1 and P2, can
be engaged in a differential game in which each has a continuous set of actions. Let
U and V denote the action spaces of P1 and P2, respectively. A state transition
equation can be defined as

ẋ = f(x, u, v), (13.203)

in which x is the state, u ∈ U , and v ∈ V .
Linear differential games are an important family of games because many tech-

niques from optimal control theory can be extended to solve them [59].

Example 13.17 (Linear Differential Games) The linear system model (13.37)
can be extended to incorporate two players. Let X = Rn be a phase space. Let
U = Rm1 and V = Rm2 be an action spaces for m1,m2 ≤ n. A linear differential
game is expressed as

ẋ = Ax+ Bu+ Cv, (13.204)

in which A, B, and C are constant, real-valued matrices of dimensions n × n,
n×m1, and n×m2, respectively. The particular solution to such games depends
on the cost functional and desired equilibrium concept. For the case of a quadratic
cost, closed-form solutions exist. These extend techniques that are developed for
linear systems with one decision maker; see Section 15.2.2 and [59].

The original work of Isaacs [477] contains many interesting examples of pursuit-
evasion differential games. One of the most famous is described next.

Example 13.18 (Homicidal Chauffeur) In the homicidal chauffeur game,
the pursuer is a Dubins car and the evader is a point robot that can translate
in any direction. Both exist in the same world, W = R2. The speeds of the car
and robot are s1 and s2, respectively. It is assumed that |s1| > |s2|, which means
that the pursuer moves faster than the evader. The transition equation is given

13.5. MULTIPLE DECISION MAKERS 783

by extending (13.15) to include two state variables that account for the robot
position:

ẋ1 = s1 cos θ1 ẋ2 = s2 cos v

ẏ1 = s1 sin θ1 ẏ2 = s2 sin v (13.205)

θ̇1 =
s1
L

tan uφ.

The state space is X is R4 × S1, and the action spaces are U = [−φmax, φmax] and
V = [0, 2π).

The task is to determine whether the pursuer can come within some prescribed
distance ǫ of the evader:

(x1 − x2)
2 + (y1 − y2)

2 < ǫ2. (13.206)

If this occurs, then the pursuer wins; otherwise, the evader wins. The solution
depends on the L, s1, s2, ǫ, and the initial state. Even though the pursuer moves
faster, the evader may escape because it does not have a limited turning radius.
For given values of L, s1, s2, and ǫ, the state space X can be partitioned into two
regions that correspond to whether the pursuer or evader wins [59, 477]. To gain
some intuition about how this partition may appear, imagine the motions that a
bullfighter must make to avoid a fast, charging bull (yes, bulls behave very much
like a fast Dubins car when provoked). �

Another interesting pursuit-evasion game arises in the case of one car attempt-
ing to intercept another [694].

Example 13.19 (A Game of Two Cars) Imagine that there are two simple
cars that move in the same world, W = R2. Each has a transition equation given
by (13.15). The state transition equation for the game is

ẋ1 = us cos θ1 ẋ2 = vs cos θ2

ẏ1 = us sin θ1 ẏ2 = vs sin θ2 (13.207)

θ̇1 =
us
L1

tan uφ θ̇2 =
vs
L2

tan vφ.

The pursuit-evasion game becomes very interesting if both players are restricted
to be Dubins cars. �

Further Reading

This chapter was synthesized from numerous sources. Many important, related subjects
were omitted. For some mechanics of bodies in contact and manipulation in general,
see [681]. Three-dimensional vehicle models were avoided because they are complicated

784 S. M. LaValle: Planning Algorithms

by SO(3); see [433]. For computational issues associated with simulating dynamical
systems, see [247, 863].

For further reading on velocity constraints on the C-space, see [596, 725] and Sec-
tions 15.3 to 15.5. For more problems involving rolling spheres, see [527] and references
therein. The rolling-ball problem is sometimes referred to as the Chaplygin ball. A non-
holonomic manipulator constructed from rolling-ball joints was developed and analyzed
in [729]. The kinematics of curved bodies in contact was studied in [632, 716]. For mo-
tion planning in this context, see [101, 103, 223, 676]. Other interesting nonholonomic
systems include the snakeboard [473, 629], roller racer [556], rollerblader [214], Trikke
[213], and examples in [112] (e.g., the Chaplygin sled).

Phase space representations are a basic part of differential equations, physics, and
control theory; see [44, 192].

Further reading in mechanics is somewhat complicated by two different levels of
treatment. Classical mechanics texts do not base the subject on differential geometry,
which results in cumbersome formulations and unusual terminology (e.g., generalized
coordinates). Modern mechanics texts overcome this problem by cleanly formulating
everything in terms of geodesics on Riemannian manifolds; however, this may be more
difficult to absorb for readers without background in differential geometry. An excellent
source for modern mechanics is [39]. One of the most famous texts for classical mechanics
is [397]. For an on-line book that covers the calculus of variations, including constrained
Lagrangians, see [790]. The constrained Lagrangian presentation is based on Chapter 3
of [789], Section 2.4 of [397], and parts of [405]. Integral constraints on the Lagrangian
are covered in [790], in addition to algebraic and differential constraints. Lagrangian
mechanics under inequality constraints is considered in [789]. The presentation of the
Hamiltonian in Section 13.4.4 is based on Chapter 7 of [397] and Section 15 of [39]. For
advanced, modern treatments of mechanics in the language of affine connections and
Christoffel symbols, see [3, 156, 677]. Another source, which is also heavily illustrated,
is [359]. For further reading on robot dynamics, see [30, 204, 725, 856, 907, 994]. For
dynamics of automobiles, see [389].

For further reading on differential game theory, primary sources are [59, 423, 477]; see
also [34, 57, 783, 985, 991, 992, 993, 997]. Lower bounds for the algorithmic complexity
of pursuit-evasion differential games are presented in [821].

Exercises

1. Let C = R4. There are two Pfaffian constraints, q̇1+q̇2+q̇3+q̇4 = 0 and q̇2−q̇4 = 0.
Determine the appropriate number of action variables and express the differential
constraints in the form q̇ = f(q, u).

2. Introduce a phase space and convert 2ÿ − 10ẏ2 + 5y = 0 into the form ẋ = f(x).

3. Introduce a phase space and convert y(4) + y = 0 into the form ẋ = f(x).

4. Derive the configuration transition equation (13.19) for a car pulling trailers.

5. Use the main idea of Section 13.2.4 to develop a smooth-steering extension of the
car pulling trailers, (13.19).

13.5. MULTIPLE DECISION MAKERS 785

θ1

m1g

L1

L2

θ2

m2q

Figure 13.14: A double pendulum.

6. Suppose that two identical differential-drive robots are connected together at their
centers with a rigid bar of length d. The robots are attached at each end of the
rod, and each attachment forms a revolute joint. There are four wheels to control;
however, some combinations of wheel rotations cause skidding. Assuming that
skidding is not allowed, develop a motion model of the form q̇ = f(q, u), in which
C and U are chosen to reflect the true degrees of freedom.

7. Extend the lunar lander model to a general rigid body with a thruster that does
not apply forces through the center of mass.

8. Develop a model for a 3D rotating rigid body fired out of a canon at a specified
angle above level ground under gravity. Suppose that thrusters are placed on the
body, enabling it to be controlled before it impacts the ground. Develop general
phase transition equations.

9. Add gravity with respect to q2 in Example 13.12 and derive the new state transition
equation using the Euler-Lagrange equation.

10. Use the constrained Lagrangian to derive the equations of motion of the pendulum
in Example 13.8.

11. Define a phase space, and determine an equation of the form ẋ = f(x) for the
double pendulum shown in Figure 13.14.

12. Extend Example 13.13 to obtain the dynamics of a three-link manipulator. The
third link, A3, is attached to the other two by a revolute joint. The new parameters
are θ3, d2, ℓ3, m3, and I3.

786 S. M. LaValle: Planning Algorithms

13. Solve Example 13.14 by parameterizing the sphere with standard spherical coor-
dinates and using the unconstrained Lagrangian. Verify that the same answer is
obtained.

14. Convert the equations in (13.161) into phase space form, to obtain the phase
transition equation in the form ẋ = f(x, u). Express the right side of the equation
in terms of the basic parameters, such as mass, moment of inertia, and lengths.

15. Define the Hamiltonian for a free-floating 2D rigid body under gravity and develop
Hamilton’s equations.

Implementations

16. Make a 3D spacecraft (rigid-body) simulator that allows any number of binary
thrusters to be placed in any position and orientation.

17. Make a simulator for the two-link manipulator in Example 13.13.

